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Abstract

The purpose of this paper is to explain how various thermochemical values are
computed in Gaussian. The paper documents what equations are used to calculate
the quantities, but doesn’t explain them in great detail, so a basic understanding
of statistical mechanics concepts, such as partition functions, is assumed. Gaussian
thermochemistry output is explained, and a couple of examples, including calculating
the enthalpy and Gibbs free energy for a reaction, the heat of formation of a molecule
and absolute rates of reaction are worked out.
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1 Introduction

The equations used for computing thermochemical data in Gaussian are equivalent to those
given in standard texts on thermodynamics. Much of what is discussed below is covered
in detail in “Molecular Thermodynamics” by McQuarrie and Simon (1999). I’ve cross-
referenced several of the equations in this paper with the same equations in the book, to
make it easier to determine what assumptions were made in deriving each equation. These
cross-references have the form [McQuarrie, §7-6, Eq. 7.27] which refers to equation 7.27 in
section 7-6.

One of the most important approximations to be aware of throughout this analysis is
that all the equations assume non-interacting particles and therefore apply only to an ideal
gas. This limitation will introduce some error, depending on the extent that any system
being studied is non-ideal. Further, for the electronic contributions, it is assumed that the
first and higher excited states are entirely inaccessible. This approximation is generally not
troublesome, but can introduce some error for systems with low lying electronic excited
states.

The examples in this paper are typically carried out at the HF/STO-3G level of theory.
The intent is to provide illustrative examples, rather than research grade results.

The first section of the paper is this introduction. The next section of the paper, I give the
equations used to calculate the contributions from translational motion, electronic motion,
rotational motion and vibrational motion. Then I describe a sample output in the third
section, to show how each section relates to the equations. The fourth section consists of
several worked out examples, where I calculate the heat of reaction and Gibbs free energy of
reaction for a simple bimolecular reaction, and absoloute reaction rates for another. Finally,
an appendix gives a list of the all symbols used, their meanings and values for constants I’ve
used.

2 Sources of components for thermodynamic quanti-

ties

In each of the next four subsections of this paper, I will give the equations used to calculate
the contributions to entropy, energy, and heat capacity resulting from translational, elec-
tronic, rotational and vibrational motion. The starting point in each case is the partition
function q(V, T ) for the corresponding component of the total partition function. In this
section, I’ll give an overview of how entropy, energy, and heat capacity are calculated from
the partition function.

The partition function from any component can be used to determine the entropy con-
tribution S from that component, using the relation [McQuarrie, §7-6, Eq. 7.27]:

S = NkB +NkB ln

(
q(V, T )

N

)
+NkBT

(
∂ ln q

∂T

)
V

The form used in Gaussian is a special case. First, molar values are given, so we can
divide by n = N/NA, and substitute NAkB = R. We can also move the first term into the
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logarithm (as e), which leaves (with N = 1):

S = R +R ln (q(V, T )) +RT

(
∂ ln q

∂T

)
V

= R ln (q(V, T )e) +RT

(
∂ ln q

∂T

)
V

= R

(
ln(qtqeqrqve) + T

(
∂ ln q

∂T

)
V

)
(1)

The internal thermal energy E can also be obtained from the partition function [Mc-
Quarrie, §3-8, Eq. 3.41]:

E = NkBT
2

(
∂ ln q

∂T

)
V

, (2)

and ultimately, the energy can be used to obtain the heat capacity [McQuarrie, §3.4,
Eq. 3.25]:

CV =

(
∂E

∂T

)
N,V

(3)

These three equations will be used to derive the final expressions used to calculate the
different components of the thermodynamic quantities printed out by Gaussian.

2.1 Contributions from translation

The equation given in McQuarrie and other texts for the translational partition function is
[McQuarrie, §4-1, Eq. 4.6]:

qt =

(
2πmkBT

h2

)3/2

V.

The partial derivative of qt with respect to T is:(
∂ ln qt

∂T

)
V

=
3

2T

which will be used to calculate both the internal energy Et and the third term in Equation 1.
The second term in Equation 1 is a little trickier, since we don’t know V . However, for

an ideal gas, PV = NRT =
(
n
NA

)
NAkBT , and V = kBT

P
. Therefore,

qt =

(
2πmkBT

h2

)3/2
kBT

P
.

which is what is used to calculate qt in Gaussian. Note that we didn’t have to make this
substitution to derive the third term, since the partial derivative has V held constant.

The translational partition function is used to calculate the translational entropy (which
includes the factor of e which comes from Stirling’s approximation):

St = R
(

ln(qte) + T
(

3

2T

))
= R(ln qt + 1 + 3/2).
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The contribution to the internal thermal energy due to translation is:

Et = NAkBT
2

(
∂ ln q

∂T

)
V

= RT 2
(

3

2T

)
=

3

2
RT

Finally, the constant volume heat capacity is given by:

Ct =
∂Et

∂T

=
3

2
R.

2.2 Contributions from electronic motion

The usual electronic partition function is [McQuarrie, §4-2, Eq. 4.8]:

qe = ω0e
−ε0/kBT + ω1e

−ε1/kBT + ω2e
−ε2/kBT + · · ·

where ω is the degeneracy of the energy level, εn is the energy of the n-th level.
Gaussian assumes that the first electronic excitation energy is much greater than kBT .

Therefore, the first and higher excited states are assumed to be inaccessible at any tempera-
ture. Further, the energy of the ground state is set to zero. These assumptions simplify the
electronic partition function to:

qe = ω0,

which is simply the electronic spin multiplicity of the molecule.
The entropy due to electronic motion is:

Se = R

(
ln qe + T

(
∂ ln qe

∂T

)
V

)
= R (ln qe + 0) .

Since there are no temperature dependent terms in the partition function, the electronic
heat capacity and the internal thermal energy due to electronic motion are both zero.

2.3 Contributions from rotational motion

The discussion for molecular rotation can be divided into several cases: single atoms, linear
polyatomic molecules, and general non-linear polyatomic molecules. I’ll cover each in order.

For a single atom, qr = 1. Since qr does not depend on temperature, the contribution
of rotation to the internal thermal energy, its contribution to the heat capacity and its
contribution to the entropy are all identically zero.
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For a linear molecule, the rotational partition function is [McQuarrie, §4-6, Eq. 4.38]:

qr =
1

σr

(
T

Θr

)
where Θr = h2/8π2IkB. I is the moment of inertia. The rotational contribution to the
entropy is

Sr = R

(
ln qr + T

(
∂ ln qr

∂T

)
V

)
= R(ln qr + 1).

The contribution of rotation to the internal thermal energy is

Er = RT 2

(
∂ ln qr

∂T

)
V

= RT 2
(

1

T

)
= RT

and the contribution to the heat capacity is

Cr =

(
∂Er

∂T

)
V

= R.

For the general case for a nonlinear polyatomic molecule, the rotational partition function
is [McQuarrie, §4-8, Eq. 4.56]:

qr =
π1/2

σr

(
T 3/2

(Θr,xΘr,yΘr,z)1/2)

)

Now we have
(
∂ ln q
∂T

)
V

= 3
2T

, so the entropy for this partition function is

Sr = R

(
ln qr + T

(
∂ ln qr

∂T

)
V

)

= R(ln qr +
3

2
).

Finally, the contribution to the internal thermal energy is

Er = RT 2

(
∂ ln qr

∂T

)
V

= RT 2
(

3

2T

)
=

3

2
RT
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and the contribution to the heat capacity is

Cr =

(
∂Er

∂T

)
V

=
3

2
R.

The average contribution to the internal thermal energy from each rotational degree of
freedom is RT/2, while it’s contribution to Cr is R/2.

2.4 Contributions from vibrational motion

The contributions to the partition function, entropy, internal energy and constant volume
heat capacity from vibrational motions are composed of a sum (or product) of the contri-
butions from each vibrational mode, K. Only the real modes are considered; modes with
imaginary frequencies (i.e. those flagged with a minus sign in the output) are ignored. Each
of the 3natoms− 6 (or 3natoms− 5 for linear molecules) modes has a characteristic vibrational
temperature, Θv,K = hνK/kB.

There are two ways to calculate the partition function, depending on where you choose
the zero of energy to be: either the bottom of the internuclear potential energy well, or
the first vibrational level. Which you choose depends on whether or not the contributions
arising from zero-point energy will be coputed separately or not. If they are computed
separately, then you should use the bottom of the well as your reference point, otherwise the
first vibrational energy level is the appropriate choice.

If you choose the zero reference point to be the bottom of the well (BOT), then the
contribution to the partition function from a given vibrational mode is [McQuarrie, §4-4,
Eq. 4.24]:

qv,K =
e−Θv,K/2T

1− e−Θv,K/T

and the overall vibrational partition function is[McQuarrie, §4-7, Eq. 4.46]:

qv =
∏
K

e−Θv,K/2T

1− e−Θv,K/T

On the other hand, if you choose the first vibrational energy level to be the zero of energy
(V=0), then the partition function for each vibrational level is

qv,K =
1

1− e−Θv,K/T

and the overall vibrational partition function is:

qv =
∏
K

1

1− e−Θv,K/T

Gaussian uses the bottom of the well as the zero of energy (BOT) to determine the other
thermodynamic quantities, but also prints out the V=0 partition function. Ultimately, the
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only difference between the two references is the additional factor of Θv,K/2, (which is the
zero point vibrational energy) in the equation for the internal energy Ev. In the expressions
for heat capacity and entropy, this factor disappears since you differentiate with respect to
temperature (T ).

The total entropy contribution from the vibrational partition function is:

Sv = R

(
ln(qv) + T

(
∂ ln q

∂T

)
V

)

= R

(
ln(qv) + T

(∑
K

Θv,K

2T 2
+
∑
K

(Θv,K/T
2)e−Θv,K/T

1− e−Θv,K/T

))

= R

(∑
K

(
Θv,K

2T
+ ln(1− e−Θv,K/T )

)
+ T

(∑
K

Θv,K

2T 2
+
∑
K

(Θv,K/T
2)e−Θv,K/T

1− e−Θv,K/T

))

= R

(∑
K

ln(1− e−Θv,K/T ) +

(∑
K

(Θv,K/T )e−Θv,K/T

1− e−Θv,K/T

))

= R
∑
K

(
Θv,K/T

eΘv,K/T − 1
− ln(1− e−Θv,K/T )

)

To get from the fourth line to the fifth line in the equation above, you have to multiply by
e
Θv,K/T

e
Θv,K/T

.
The contribution to internal thermal energy resulting from molecular vibration is

Ev = R
∑
K

Θv,K

(
1

2
+

1

eΘv,K/T − 1

)

Finally, the contribution to constant volume heat capacity is

Cv = R
∑
K

eΘv,K/T

(
Θv,K/T

e−Θv,K/T − 1

)2

Low frequency modes (defined below) are included in the computations described above.
Some of these modes may be internal rotations, and so may need to be treated separately,
depending on the temperatures and barriers involved. In order to make it easier to correct for
these modes, their contributions are printed out separately, so that they may be subtracted
out. A low frequency mode in Gaussian is defined as one for which more than five percent of
an assembly of molecules are likely to exist in excited vibrational states at room temperature.
In other units, this corresponds to about 625 cm−1, 1.9×1013 Hz, or a vibrational temperature
of 900 K.

It is possible to use Gaussian to automatically perform some of this analysis for you, via
the Freq=HindRot keyword. This part of the code is still undergoing some improvements, so
I will not go into it in detail. See P. Y. Ayala and H. B. Schlegel, J. Chem. Phys. 108 2314
(1998) and references therein for more detail about the hindered rotor analysis in Gaussian
and methods for correcting the partition functions due to these effects.
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3 Thermochemistry output from Gaussian

This section describes most of the Gaussian thermochemistry output, and how it relates to
the equations I’ve given above.

3.1 Output from a frequency calculation

In this section, I intentionally used a non-optimized structure, to show more output. For
production runs, it is very important to use structures for which the first derivatives are zero
— in other words, for minima, transition states and higher order saddle points. It is occa-
sionally possible to use structures where one of the modes has non-zero first derivatives, such
as along an IRC. For more information about why it is important to be at a stationary point
on the potential energy surface, see my white paper on “Vibrational Analysis in Gaussian ”.

Much of the output is self-explanatory. I’ll only comment on some of the output which
may not be immediately clear. Some of the output is also described in “Exploring Chemistry
with Electronic Structure Methods, Second Edition” by James B. Foresman and Æleen
Frisch.

-------------------

- Thermochemistry -

-------------------

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Atom 1 has atomic number 6 and mass 12.00000

Atom 2 has atomic number 6 and mass 12.00000

Atom 3 has atomic number 1 and mass 1.00783

Atom 4 has atomic number 1 and mass 1.00783

Atom 5 has atomic number 1 and mass 1.00783

Atom 6 has atomic number 1 and mass 1.00783

Atom 7 has atomic number 1 and mass 1.00783

Atom 8 has atomic number 1 and mass 1.00783

Molecular mass: 30.04695 amu.

The next section gives some characteristics of the molecule based on the moments of iner-
tia, including the rotational temperature and constants. The zero-point energy is calculated
using only the non-imaginary frequencies.

Principal axes and moments of inertia in atomic units:

1 2 3

EIGENVALUES -- 23.57594 88.34097 88.34208

X 1.00000 0.00000 0.00000

Y 0.00000 1.00000 0.00001

Z 0.00000 -0.00001 1.00000

THIS MOLECULE IS AN ASYMMETRIC TOP.

ROTATIONAL SYMMETRY NUMBER 1.

ROTATIONAL TEMPERATURES (KELVIN) 3.67381 0.98044 0.98043
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ROTATIONAL CONSTANTS (GHZ) 76.55013 20.42926 20.42901

Zero-point vibrational energy 204885.0 (Joules/Mol)

48.96870 (Kcal/Mol)

If you see the following warning, it can be a sign that one of two things is happening.
First, it often shows up if your structure is not a minimum with respect to all non-imaginary
modes. You should go back and re-optimize your structure, since all the thermochemistry
based on this structure is likely to be wrong. Second, it may indicate that there are internal
rotations in your system. You should correct for errors caused by this situation.

WARNING-- EXPLICIT CONSIDERATION OF 1 DEGREES OF FREEDOM AS

VIBRATIONS MAY CAUSE SIGNIFICANT ERROR

Then the vibrational temperatures and zero-point energy (ZPE):

VIBRATIONAL TEMPERATURES: 602.31 1607.07 1607.45 1683.83 1978.85

(KELVIN) 1978.87 2303.03 2389.95 2389.96 2404.55

2417.29 2417.30 4202.52 4227.44 4244.32

4244.93 4291.74 4292.31

Zero-point correction= 0.078037 (Hartree/Particle)

Each of the next few lines warrants some explanation. All of them include the zero-
point energy. The first line gives the correction to the internal thermal energy, Etot =
Et + Er + Ev + Ee.

Thermal correction to Energy= 0.081258

The next two lines, respectively, are

Hcorr = Etot + kBT

and
Gcorr = Hcorr − TStot,

where Stot = St + Sr + Sv + Se.

Thermal correction to Enthalpy= 0.082202

Thermal correction to Gibbs Free Energy= 0.055064

The Gibbs free energy includes ∆PV = ∆NRT , so when it’s applied to calculating ∆G
for a reaction, ∆NRT ≈ ∆PV is already included. This means that ∆G will be computed
correctly when the number of moles of gas changes during the course of a reaction.

The next four lines are estimates of the total energy of the molecule, after various cor-
rections are applied. Since I’ve already used E to represent internal thermal energy, I’ll use
E0 for the total electronic energy.

Sum of electronic and zero-point energies = E0 + EZPE
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Sum of electronic and thermal energies = E0 + Etot

Sum of electronic and thermal enthalpies = E0 +Hcorr

Sum of electronic and thermal free energies = E0 +Gcorr

Sum of electronic and zero-point Energies= -79.140431

Sum of electronic and thermal Energies= -79.137210

Sum of electronic and thermal Enthalpies= -79.136266

Sum of electronic and thermal Free Energies= -79.163404

The next section is a table listing the individual contributions to the internal thermal
energy (Etot), constant volume heat capacity (Ctot) and entropy (Stot). For every low fre-
quency mode, there will be a line similar to the last one in this table (labeled VIBRATION 1).
That line gives the contribution of that particular mode to Etot, Ctot and Stot. This allows
you to subtract out these values if you believe they are a source of error.

E (Thermal) CV S

KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN

TOTAL 50.990 8.636 57.118

ELECTRONIC 0.000 0.000 0.000

TRANSLATIONAL 0.889 2.981 36.134

ROTATIONAL 0.889 2.981 19.848

VIBRATIONAL 49.213 2.674 1.136

VIBRATION 1 0.781 1.430 0.897

Finally, there is a table listing the individual contributions to the partition function. The
lines labeled BOT are for the vibrational partition function computed with the zero of energy
being the bottom of the well, while those labeled with (V=0) are computed with the zero
of energy being the first vibrational level. Again, special lines are printed out for the low
frequency modes.

Q LOG10(Q) LN(Q)

TOTAL BOT 0.470577D-25 -25.327369 -58.318422

TOTAL V=0 0.368746D+11 10.566728 24.330790

VIB (BOT) 0.149700D-35 -35.824779 -82.489602

VIB (BOT) 1 0.419879D+00 -0.376876 -0.867789

VIB (V=0) 0.117305D+01 0.069318 0.159610

VIB (V=0) 1 0.115292D+01 0.061797 0.142294

ELECTRONIC 0.100000D+01 0.000000 0.000000

TRANSLATIONAL 0.647383D+07 6.811161 15.683278

ROTATIONAL 0.485567D+04 3.686249 8.487901
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3.2 Output from compound model chemistries

This section explains what the various thermochemical quantities in the summary out of a
compound model chemistry, such as CBS-QB3 or G2, means.

I’ll use a CBS-QB3 calculation on water, but the discussion is directly applicable to all
the other compound models available in Gaussian. The two lines of interest from the output
look like:

CBS-QB3 (0 K)= -76.337451 CBS-QB3 Energy= -76.334615

CBS-QB3 Enthalpy= -76.333671 CBS-QB3 Free Energy= -76.355097

Here are the meanings of each of those quantities.

• CBS-QB3 (0 K): This is the total electronic energy as defined by the compound model,
including the zero-point energy scaled by the factor defined in the model.

• CBS-QB3 Energy: This is the total electronic energy plus the internal thermal energy,
which comes directly from the thermochemistry output in the frequency part of the
output. The scaled zero-point energy is included.

• CBS-QB3 Enthalpy: This is the total electronic energy plus Hcorr, as it is described
above with the unscaled zero-point energy removed. This sum is appropriate for cal-
culating enthalpies of reaction, as described below.

• CBS-QB3 Free Energy: This is the total electronic energy plus Gcorr, as it is described
above, again with the unscaled zero-point energy removed. This sum is appropriate
for calculating Gibbs free energies of reaction, also as described below.

4 Worked-out Examples

In this section I will show how to use these results to generate various thermochemical
information.

I’ve run calculations for each of the reactants and products in the reaction where ethyl
radical abstracts a hydrogen atom from molecular hydrogen:

C2H5 +H2 → C2H6 +H

as well as for the transition state (all at 1.0 atmospheres and 298.15K). The thermochemistry
output from Gaussian is summarized in Table 1.

Once you have the data for all the relevant species, you can calculate the quantities
you are interested in. Unless otherwise specified, all enthalpies are at 298.15K. I’ll use
298K ≈ 298.15K to shorten the equations.
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C2H5 H2 C2H6 H C
E0 −77.662998 −1.117506 −78.306179 −0.466582 −37.198393
EZPE 0.070833 0.012487 0.089704 0.000000 0.000000
Etot 0.074497 0.014847 0.093060 0.001416 0.001416
Hcorr 0.075441 0.015792 0.094005 0.002360 0.002360
Gcorr 0.046513 0.001079 0.068316 −0.010654 −0.014545
E0 + EZPE −77.592165 −1.105019 −78.216475 −0.466582 −37.198393
E0 + Etot −77.588501 −1.102658 −78.213119 −0.465166 −37.196976
E0 +Hcorr −77.587557 −1.101714 −78.212174 −0.464221 −37.196032
E0 +Gcorr −77.616485 −1.116427 −78.237863 −0.477236 −37.212938

Table 1: Calculated thermochemistry values from Gaussian for the reaction C2H5 + H2 →
C2H6 +H. All values are in Hartrees.

4.1 Enthalpies and Free Energies of Reaction

The usual way to calculate enthalpies of reaction is to calculate heats of formation, and take
the appropriate sums and difference.

∆rH
◦(298K) =

∑
products

∆fH
◦
prod(298K)−

∑
reactants

∆fH
◦
react(298K).

However, since Gaussian provides the sum of electronic and thermal enthalpies, there is a
short cut: namely, to simply take the difference of the sums of these values for the reactants
and the products. This works since the number of atoms of each element is the same on
both sides of the reaction, therefore all the atomic information cancels out, and you need
only the molecular data.

For example, using the information in Table 1, the enthalpy of reaction can be calculated
simply by

∆rH
◦(298K) =

∑
(E0 +Hcorr)products −

∑
(E0 +Hcorr)reactants

= ((−78.212174 +−0.464221)− (−77.587557 +−1.101714)) ∗ 627.5095

= 0.012876 ∗ 627.5095

= 8.08 kcal/mol

The same short cut can be used to calculate Gibbs free energies of reaction:

∆rH
◦(298K) =

∑
(E0 +Gcorr)products −

∑
(E0 +Gcorr)reactants

= ((−78.237863 +−0.477236)− (−77.616485 +−1.116427)) ∗ 627.5095

= 0.017813 ∗ 627.5095

= 11.18 kcal/mol

4.2 Rates of Reaction

In this section I’ll show how to compute rates of reaction using the output from Gaussian. I’ll
be using results derived from transition state theory in section 28-8 of “Physical Chemistry,
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Compound E0 E0 +Gcorr

HF −98.572847 −98.579127
HD −98.572847 −98.582608
Cl −454.542193 −454.557870

HCl −455.136012 −455.146251
DCl −455.136012 −455.149092
F −97.986505 −98.001318

FHCl −553.090218 −553.109488
FDCl −553.090218 −553.110424

Table 2: Total HF/STO-3G electronic energies and sum of electronic and thermal free ener-
gies for atoms molecules and transition state complex of the reaction FH + Cl → F + HCl
and the deuterium substituted analog.

A Molecular Approach” by D. A. McQuarrie and J. D. Simon. The key equation (number
28.72, in that text) for calculating reaction rates is

k(T ) =
kBT

hc◦
e−∆‡G◦/RT

I’ll use c◦ = 1 for the concentration. For simple reactions, the rest is simply plugging in
the numbers. First, of course, we need to get the numbers. I’ve run HF/STO-3G frequency
calculation for reaction FH + Cl → F + HCl and also for the reaction with deuterium
substituted for hydrogen. The results are summarized in Table 2. I put the total electronic
energies of each compound into the table as well to illustrate the point that the final geometry
and electronic energy are independent of the masses of the atoms. Indeed, the cartesian
force constants themselves are independent of the masses. Only the vibrational analysis,
and quantities derived from it, are mass dependent.

The first step in calculating the rates of these reactions is to compute the free energy of
activation, ∆‡G◦ ((H) is for the hydrogen reaction, (D) is for deuterium reaction):

∆‡G◦(H) = −553.109488− (−98.579127 +−454.557870)

= 0.027509 Hartrees

= 0.027509 ∗ 627.5095 = 17.26 kcal/mol

∆‡G◦(D) = −553.110424− (−98.582608 +−454.557870)

= 0.030054 Hartrees

= 0.030054 ∗ 627.5095 = 18.86 kcal/mol

Then we can calculate the reaction rates. The values for the constants are listed in the
appendix. I’ve taken c◦ = 1.

k(298, H) =
kBT

hc◦
e−∆‡G◦/RT
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=
1.380662× 10−23(298.15)

6.626176× 10−34(1)
exp

( −17.26

1.987 ∗ 298.15

)
= 6.2125× 1012e−0.02913

= 6.034× 1012s−1

k(298, D) = 6.2125× 1012 exp
( −18.86

1.987 ∗ 298.15

)
= 6.2125× 1012e−0.031835

= 6.017× 1012s−1

So we see that the deuterium reaction is indeed slower, as we would expect. Again, these
calculations were carried out at the HF/STO-3G level, for illustration purposes, not for re-
search grade results. More complex reactions will need more sophisticated analyses, perhaps
including careful determination of the effects of low frequency modes on the transition state,
and tunneling effects.

4.3 Enthalpies and Free Energies of Formation

Calculating enthalpies of formation is a straight-forward, albeit somewhat tedious task, which
can be split into a couple of steps. The first step is to calculate the enthalpies of formation
(∆fH

◦(0K)) of the species involved in the reaction. The second step is to calculate the
enthalpies of formation of the species at 298K.

Calculating the Gibbs free energy of reaction is similar, except we have to add in the
entropy term:

∆fG
◦(298) = ∆fH

◦(298K)− T (S◦(M, 298K)−
∑

S◦(X, 298K))

To calculate these quantities, we need a few component pieces first. In the descriptions
below, I will use M to stand for the molecule, and X to represent each element which makes
up M , and x will be the number of atoms of X in M .

• Atomization energy of the molecule,
∑
D0(M):

These are readily calculated from the total energies of the molecule (E0(M)), the zero-
point energy of the molecule (EZPE(M)) and the constituent atoms:∑

D0(M) =
∑

atoms

xE0(X)− E0(M) + EZPE(M)

• Heats of formation of the atoms at 0K, ∆fH
◦(X, 0K):

I have tabulated recommended values for the heats of formation of the first and second
row atomic elements at 0K in Table 3. There are (at least) two schools of thought with
respect to the which atomic heat of formation data is most appropriate. Some authors
prefer to use purely experimental data for the heats of formation (Curtiss, et. al., J.
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Chem. Phys. 106, 1063 (1997)). Others (Ochterski, et. al., J. Am. Chem. Soc. 117,
11299 (1995)), prefer to use a combination of experiment and computation to obtain
more accurate values. The elements of concern are boron, beryllium and silicon. I
have arranged Table 3 so that either may be used; the experimental results are on the
top, while the computational results for the three elements with large experimental
uncertainty are listed below that.

• Enthalpy corrections of the atomic elements, H◦X(298K)−H◦X(0K) :

The enthalpy corrections of the first and second row atomic elements are also included
in Table 3. These are used to convert the atomic heats of formation at 0K to those
at 298.15K, and are given for the elements in their standard states. Since they do not
depend on the accuracy of the heat of formation of the atom, they are the same for
both the calculated and experimental data.

This is generally not the same as the output from Gaussian for a calculation on
an isolated gas-phase atom. These values are referenced to the standard states of
the elements. For example, the value for hydrogen atom is 1.01 kcal/mol. This is
(H◦H2

(298K) − H◦H2
(0K))/2, and not H◦H(298K) − H◦H(0K), which is what Gaussian

calculates.

• Enthalpy correction for the molecule, H◦M(298K)−H◦M(0K) :

For a molecule, this is Hcorr − EZPE(M), where Hcorr is the value printed out in the
line labeled “Thermal correction to Enthalpy” in Gaussian output. Remember,
though, that the output is in Hartrees/particle, and needs to be converted to kcal/mol.
The conversion factor is 1 Hartree = 627.5095 kcal/mol.

• Entropy for the atoms, S◦X(298K) :

These are summarized in Table 3. The values were taken from the JANAF tables
(M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald,
and A. N. Syverud, J. Phys. Ref. Data 14 Suppl. No. 1 (1985)). Again, these values
are referenced to the standard states of the elements, and will disagree with values
Gaussian calculates for the gas-phase isolated atoms.

• Entropy for the molecule, S◦M(298K) :

Gaussian calculates G = H − TS, and prints it out on the line labeled “Thermal
correction to Gibbs Free Energy”. The entropy can be teased out of this using
S = (H −G)/T .

Putting all these pieces together, we can finally take the steps necessary to calculate
∆fH

◦(298K) and ∆fG
◦(298K):

1. Calculate ∆fH
◦(M, 0K) for each molecule:

∆fH
◦(M, 0K) =

∑
atoms

x∆fH
◦(X, 0K)−

∑
D0(M)

=
∑

atoms

x∆fH
◦(X, 0K)−

( ∑
atoms

xE0(X)− E0(M)

)
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Experimentala

Element ∆fH
◦(0K) H◦(298K)−H◦(0K) S◦(298K)

H 51.63±0.001 1.01 27.418±0.004
Li 37.69±0.2 1.10 33.169±0.006
Be 76.48±1.2 0.46 32.570±0.005
B 136.2 ±0.2 0.29 36.672±0.008
C 169.98±0.1 0.25 37.787±0.21
N 112.53±0.02 1.04 36.640±0.01
O 58.99±0.02 1.04 38.494±0.005
F 18.47±0.07 1.05 37.942±0.001

Na 25.69±0.17 1.54 36.727±0.006
Mg 34.87±0.2 1.19 8.237±d

Al 78.23±1.0 1.08 39.329±0.01
Si 106.6 ±1.9 0.76 40.148±0.008
P 75.42±0.2 1.28 39.005±0.01
S 65.66±0.06 1.05 40.112±0.008
Cl 28.59±0.001 1.10 39.481±0.001

Calculatedb

Element ∆fH
◦(0K) H◦(298K)−H◦(0K) S◦(298K)

Be 75.8 ±0.8 0.46 32.570±0.005
B 136.2 ±0.2 0.29 36.672±0.008
Si 108.1 ±0.5 0.76 40.148±0.008

Table 3: Experimental and calculated enthalpies of formation of elements (kcal mol−1) and
entropies of atoms (cal mol−1 K−1) . a Experimental enthalpy values taken from J. Chem.
Phys. 106, 1063 (1997). b Calculated enthalpy values taken from J. Am. Chem. Soc. 117,
11299 (1995). H◦(298K) −H◦(0K) is the same for both calculated and experimental, and
is taken for elements in their standard states. c Entropy values taken from JANAF Ther-
mochemical Tables: M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip,
R. A. McDonald, and A. N. Syverud, J. Phys. Ref. Data 14 Suppl. No. 1 (1985). d No error
bars are given for Mg in JANAF.

2. Calculate ∆fH
◦(M, 298K) for each molecule:

∆fH
◦(M, 298K) = ∆fH

◦(M, 0K) + (H◦M(298K)−H◦M(0K))

−
∑

atoms

x(H◦X(298K)−H◦X(0K))

3. Calculate ∆fG
◦(M, 298K) for each molecule:

∆fG
◦(M, 298K) = ∆rH

◦(298K)− 298.15(S◦(M, 298K)−
∑

S◦(X, 298K))

Here is a worked out example, where I’ve calculated ∆fH
◦(298K) for the reactants and

products in the reaction I described above.

16



First, I’ll calculate ∆fH
◦(0K) for one of the species:

∆fH
◦(C2H6, 0K) = 2 ∗ 169.98 + 6 ∗ 51.63

−627.5095 ∗ (2 ∗ (−37.198393) + 6 ∗ (−0.466582)− (−78.216475))

= 649.74− 627.5095 ∗ 1.020197

= 9.56

The next step is to calculate the ∆fH
◦(298K):

∆fH
◦(C2H6, 298K) = 9.56 + 627.5095 ∗ (0.094005− 0.089704)− (2 ∗ 0.25 + 6 ∗ 1.01)

= 9.56 + 2.70− 6.56

= 5.70

To calculate the Gibbs free energy of formation, we have (the factors of 1000 are to
convert kcal to or from cal) :

∆fG
◦(C2H6, 298K) = 5.70 + 298.15(627.5095 ∗ (0.094005− 0.068316)/298.15−

(2 ∗ 37.787 + 6 ∗ 27.418)/1000

= 5.70 + 298.15 ∗ (0.054067− 0.240082)

= −49.76

5 Summary

The essential message is this: the basic equations used to calculate thermochemical quantities
in Gaussian are based on those used in standard texts. Since the vibrational partition
function depends on the frequencies, you must use a structure that is either a minimum or
a saddle point. For electronic contributions to the partition function, it is assumed that the
first and all higher states are inaccessible at the temperature the calculation is done at. The
data generated by Gaussian can be used to calculate heats and free energies of reactions as
well as absolute rate information.
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Appendix

Symbols

Ce = contribution to the heat capacity due to electronic motion

Cr = contribution to the heat capacity due to rotational motion

Ctot = total heat capacity (Ct + Cr + Cv + Ce)

Ct = contribution to the heat capacity due to translation

Cv = contribution to the heat capacity due to vibrational motion

Ee = internal energy due to electronic motion

Er = internal energy due to rotational motion

Etot = total internal energy (Et + Er + Ev + Ee)

Et = internal energy due to translation

Ev = internal energy due to vibrational motion

Gcorr = correction to the Gibbs free energy due to internal energy

Hcorr = correction to the enthalpy due to internal energy

I = moment of inertia

K = index of vibrational modes

N = number of moles

NA = Avogadro’s number

P = pressure (default is 1 atmosphere)

R = gas constant = 8.31441 J/(mol K) = 1.987 kcal/(mol K)

Se = entropy due to electronic motion

Sr = entropy due to rotational motion

Stot = total entropy (St + Sr + Sv + Se)

St = entropy due to translation

Sv = entropy due to vibrational motion

T = temperature (default is 298.15)

V = volume

Θr,Θr,(xyz) = characteristic temperature for rotation (in the x, y or z plane)

Θv,K = characteristic temperature for vibration K

kB = Boltzmann constant = 1.380662× 10−23 J/K

εn = the energy of the n-th energy level

ωn = the degeneracy of the n-th energy level
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σr = symmetry number for rotation

h = Planck’s constant = 6.626176× 10−34 J s

m = mass of the molecule

n = number of particles (always 1)

qe = electronic partition function

qr = rotational partition function

qt = translational partition function

qv = vibrational partition function

EZPE = zero-point energy of the molecule

E0 = the total electronic energy, the MP2 energy for example

H◦, S◦, G◦ = standard enthalpy, entropy and Gibbs free energy — each compound is in its
standard state at the given temperature

∆‡G◦ = Gibbs free energy of activation

c◦ = concentration (taken to be 1)

k(T ) = reaction rate at temperature T
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