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“The primary purpose in postulating the existence of atoms in molecules is a consequence of 
the observation that atoms or groupings of atoms appear to exhibit characteristic sets of 
properties, which, in general, vary between relatively narrow limits.” 
 
 
Necessary criteria for a theory of atoms in molecules 
 
The definition of a bound atom – an atom in a molecule – must be such that it enables one to 
define all of its average properties. For reason of physical continuity, the definition of these 
properties must reduce to the quantum mechanical definition of the corresponding properties 
for an isolated atom. The atomic values for a given property should, when summed over all 
the atoms in a molecule, yield the molecular average for that property. 
 
 
The role of charge density 
 
The question “are there atoms in molecules” is equivalent to asking two equally necessary 
questions of quantum mechanics: 
 

(i) does the state function ψ(x, t), which contains all of the information that can be 
known about a system, predict a unique partitioning of a molecule into subsystems 
and if so 

(ii) can one define the observables, their average values, and their equation of motion 
for the subsystem? 

 
Answer: YES 
 
Subsystems are open systems defined in real space, their boundaries being determined by a 
particular property of the electronic charge density (Bader and Beddall 1972). 
 

 
 
The dominant morphological feature of the density defines an atom in a molecule. It is a 
scalar field in a 3d space. The topological properties of such a scalar field are conveniently 
summarized in terms of the number und kinds of its critical points. 



Critical points 
 
These are points where the first derivatives of ρ(r) vanish and thus they determine the 
position of extrema in the charge density (minima, maxima, saddle points).  
 
The structure of the density is made more evident through the study of the associated vector 
field. A representation of lines of forces is a display of a vector field.The null points referred 
to by Faraday are what is called a critical points, points where the field of ∇∇ ρρ (r) vanishes. 

 
A display of ∇ρ(r) for a molecule will make visible to the eye, without further mathematical 
analysis, the definition of its atoms and of a particular set of lines linking certain pairs of 
nuclei within the molecule – its molecular graph. 
 

 



 
 
There are four possible kinds of stable critical points in ρ(r) and each will be associated 
with a particular element of structure. From that one can conclude that atoms exist in 
molecules and they may be linked together to form structures consisting of chains, rings and 
cages. 



 
Topological properties of the charge density 
 
The form assumed by the distribution of charge in a molecular system is the physical 
manifestation of the forces acting within the system. Dominant among these is the attractive 
force exerted by the nuclei, a consequence of the localized nature of nuclear charge. This 
interaction is responsible for the single most important topological property exhibited by a 
molecular charge distribution of a many-electron system –that, in general, ∇ρ(r, X) exhibits 
local maxima only at the positions of nuclei. This is an observation based on experimental 
results obtained from X-ray diffractions studies and on the results of theoretical calculations.  
 
 

 
 
Besides the maxima saddle points are found at the midpoints along the C-C axis. In this case 
ρ(r) is a maximum in one particular plane. What is needed is a method of summarizing in a 
precise manner the principal topological features of a charge distribution. 



 
Classification of critical points 
 
Laplacian: ∇2ρ = ∂2ρ/∂x2 + ∂2ρ/∂y2 + ∂2ρ/∂z2 
 
 
ω      rank of Hessian of ρ (number of non-zero eigenvalues) 
σ      signature (sum of the signs of the eigenvalues) 
 
(ωω ,σσ ) 
 
(3, –3)   All curvatures are negative and ρρ  is a local maximum at rc, nucleus  
 
(3, –1)   Two curvatures are negative and ρρ  is a maximum at rc in the plane defined by 
their corresponding axes. ρ is a minimum at rc along the third axis which is perpendicular to 
this plane, bond critical point 
 
(3, +1)   Two curvatures are positive and ρρ  is a minimum at rc in the plane defined by their 
corresponding axes. ρ is a maximum at rc along the third axis which is perpendicular to this 
plane, ring critical point 
 
(3, +3)   All curvatures are positive and ρ is a local minimum at rc, cage critical point 
 

 
 
 
Gradient vector field of the charge density 
 
The gradient vector field of the charge distribution is represented through a display of the 
trajectories traced by the vector ∇ρ. A trajectory of ∇ρ is also called gradient path. 
 



Elements of molecular structure 
 
A (3, –3) critical point exhibits the property which defines a point attractor in the gradient 
field of the charge distribution. 
 
Since the (3, –3) critical points in a many-electron charge distribution are generally found 
only at the positions of the nuclei, the nuclei act as the attractors of the gradient field of ρ. 
The result of this identification is that the space of a molecular charge distribution, real space, 
is partitioned into disjoint regions, the basins , each of which contains one point attractors or 
nucleus. 
 
Boundaries 
 
The presence of a (3, –1) critical point provides a boundary between the basins of 
neighbouring atoms. The trajectories associated with each (3, –1) critical point define a 
surface the interatomic surface. 
 
 
 
Chemical bonds and molecular graph 
 
The existence of a (3, –1) critical point its associated atomic interaction line indicates that 
electronic charge density is accumulated between the nuclei that are so linked. 
 
Atomic interaction line: (3, –3) ⇔ (3, –1) ⇔ (3, –3) linking two neighbouring atoms 
(attractors) 
 
In this case the line of maximum charge density linking the nuclei is called a bond path and 
the (3, –1) critical point referred to as a bond critical point.  
 
For a given configuration X of the nuclei, a molecular graph is defined as the union of 
closures of the bond paths or atomic interaction lines. Pictorially, the molecular graph is the 
network of the bond paths linking pairs of neighbouring nuclear atractors. 
 
 
Rings and cages 
 
The remaining critical points of rank three occur as consequences of particular geometrical 
arrangements of bond paths and they define the remaining elements of molecular structure: 
rings and cages. 
 
Ring: (3, +1) critical point; all of the trajectories which originate at the critical point at the 
enter of the ring of nuclei,  the (3, +1) or ring critical point, terminate at the ring nuclei. 
 
Cage: (3, +3) critical point; if the bond path are so arranged as to enclose the interior of a 
molecule with ring surfaces, then a (3, +3) or cage critical point is found in the interior of the 
resulting cage. The charge density is a local minimum at a cage critical point. 
 



 
 
 

Poincare-Hopf relationship 
 
The number and type of critical points which can coexist in a system with a finite number of 
nuclei is limited: 
 
 
n – b + r –c = 1 
 
n = number of nuclei; b # bonds; r # rings; c # cages 
 
 
 
Example benzene: 12 – 12 + 1 – 0 = 1 
 
 



 
 

Valence shell charge concentration 
 
• Extrema in the Laplacian of the density are also classified by rank and signature 

resulting again in critical points. 
• The topological discussion will always refer to the negative of the Laplacian -∇2ρ •

Since charge is concentrated were ∇2ρ < 0, a local maximum in -∇2ρ is synonymous 
with a maximum in the concentration of electronic charge 

• Division into inner and out shell density possible (VSEPR) 
• ∇2ρ < 0 of the outer shell is called the valence shell charge concentration  
 

 
 
3D-Laplacian of benzene  
 

• The Laplacian of the electron density recovers the shell structure  of an atom by 
displaying a corresponding number of alternating shells of charge concentration and 
charge depletion. The uniform sphere of charge concentration present in the valence 
shell of a free atom is distorted upon chemical combination to form local maxima and 
minima. The number of local maxima in - 2ρ in the valence shell, the local valence 
charge concentrations, together with their relative positions and magnitudes, coincide 
with the number and corresponding properties of the localized electron pairs assumed 
to exist in the VSEPR model of molecular geometry. 
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