medium | dielectric constant | E(gauche)-E(trans) [kJ/mol] |
---|---|---|
vapor | 1.00 | +7.10 |
cyclohexane | 2.023 | +4.77 |
diethylether | 4.335 | +2.93 |
acetone | 20.7 | +1.25 |
acetonitrile | 36.64 | +0.98 |
# Becke3LYP/6-31G(d) int=finegrid volume b3lyp/6-31G(d) opt gauche-1,2-dichloroethane 0 1 X1 X2 1 1.0 C3 1 r3 2 90.0 C4 1 r3 2 90.0 3 180.0 Cl5 3 r5 1 a5 2 d5 Cl6 4 r5 1 a5 2 d5 H7 3 r7 1 a7 5 d7 H8 4 r7 1 a7 6 d7 H9 3 r9 1 a9 5 d9 H10 4 r9 1 a9 6 d9 r3=0.7581832 r5=1.80758744 r7=1.09354021 r9=1.09097562 a5=113.01671309 a7=109.01355166 a9=111.44412088 d5=34.80402243 d7=118.42989149 d9=-120.84409308 | ![]() |
Monte-Carlo method of calculating molar volume: based on 0.001 e/bohr**3 density envelope. Number of points per bohr**3 = 20 CutOff= 1.00D-04 Using the SCF density. There are 379 points. Will hold 379 in memory. LenV= 16741044 MDV= 16777216. Box volume = 6835.469 fraction occupied=0.092 Integrated density= 1.3626292465066807D+01 error=-3.6373707534933191D+01 Molar volume = 631.244 bohr**3/mol ( 56.332 cm**3/mol) Recommended a0 for SCRF calculation = 3.60 angstrom ( 6.80 bohr)
#P Becke3LYP/6-31G(d) scf=tight SCRF=(Dipole,Solvent=Acetonitrile,A0=3.60) b3lyp/6-31G(d) SCRF gauche-1,2-dichloroethane 0 1 X1 X2 1 1.0 C3 1 r3 2 90.0 C4 1 r3 2 90.0 3 180.0 Cl5 3 r5 1 a5 2 d5 Cl6 4 r5 1 a5 2 d5 H7 3 r7 1 a7 5 d7 H8 4 r7 1 a7 6 d7 H9 3 r9 1 a9 5 d9 H10 4 r9 1 a9 6 d9 r3=0.7581832 r5=1.80758744 r7=1.09354021 r9=1.09097562 a5=113.01671309 a7=109.01355166 a9=111.44412088 d5=34.80402243 d7=118.42989149 d9=-120.84409308The choice of the solvent can alternatively also be specified by directly giving the dielectric constant:
SCF Done: E(RB+HF-LYP) = -999.018633476 A.U. after 12 cycles Convg = 0.4543D-08 -V/T = 2.0036 S**2 = 0.0000 Final SCRF E-Field is: Dipole : 0.00000000 0.00000000 -0.00404218 Quadrupole : 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 Octapole : 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 Hexadecapole: 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 Polarization energy = -0.267823439392E-02 Total energy of solute = -999.021311711 Total energy (include solvent energy) = -999.018633476 Total energy (without reaction field) = -999.015955242
#P Becke3LYP/6-31G(d) scf=tight SCRF=(Dipole,Solvent=Acetonitrile,A0=3.60) b3lyp/6-31G(d) SCRF trans-1,2-dichloroethane 0 1 X1 X2 1 1.0 C3 1 r3 2 90.0 C4 1 r3 2 90.0 3 180.0 Cl5 3 r5 1 a5 2 -90.0 Cl6 4 r5 1 a5 2 -90.0 H7 3 r7 1 a7 5 d7 H8 4 r7 1 a7 6 d7 H9 3 r7 1 a7 5 -d7 H10 4 r7 1 a7 6 -d7 r3=0.7591126 r5=1.81475775 r7=1.0904475 a5=109.23562407 a7=111.57656952 d7=118.50082551 | ![]() |
SCF Done: E(RB+HF-LYP) = -999.019025203 A.U. after 12 cycles Convg = 0.3256D-08 -V/T = 2.0036 S**2 = 0.0000 Final SCRF E-Field is: Dipole : 0.00000000 0.00000000 0.00000000 Quadrupole : 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 Octapole : 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 Hexadecapole: 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 Polarization energy = -0.285621111172E-32 Total energy of solute = -999.019025203 Total energy (include solvent energy) = -999.019025203 Total energy (without reaction field) = -999.019025203
These trends can be reproduced semi-quantitatively using the Onsager reaction field model in combination with Hartree-Fock theory or hybrid density function methods such as Becke3LYP and medium sized basis sets such s 6-31G(d) or 6-31+G(d). One more interesting application of the Onsager reaction field model concerns the optimization of molecular structures that are not even stationary points in the gas phase. This is particularly usefull for strongly polarized (charge separtated) structures and the SN2 substitution reaction of primary amines with alkyl halides (Menshutkin reaction) will be used as an example here. If we use ammonia as a simple amine and methyl chloride as the reaction partner, we should assume that the SN2 process leads to the formation of a complex of the methylammonium cation and the chloride anion. This latter structure is, however, energetically so unfavorable in the gas phase that neither a transition state nor the product complex can be optimized.
However, starting from the gas phase reactant complex and using the Onsager reaction field for aqueous solution (dielectric constant = 78.39), it is possible to calculate a complete reaction profile containing the reactant and product complexes as well as the SN2 transition state. The actual shape of the solution phase PES will, of course, depend significantly on the chosen cavity radius. last changes: 01.04.2008, AS questions & comments to: axel.schulz@uni-rostock.de |