
 

Relativistic Effects and Pseudopotentials 
 

 

1.1 Relativistic effects - Introduction 

 

Even if the correlation energy is known precisely (corresponding to the exact solution of the 

non-relativistic Schrödinger equation), the calculated total energy would not equal the real 

(experimental) energy of atoms and molecules (See Figure 1). This difference arises from 

relativistic effects, which increase with the 4th power of the nuclear charge (Z4) and for the 

valence electrons, roughly with the 2nd power. Thus, relativistic effects can be neglected in 

most cases for lighter atoms, but have to be included when dealing with heavy elements. 

 

Figure 1 Correlation energy and relativistic correction 

 

 

 In non-relativistic quantum mechanics, the velocity of light can be assumed to be 

infinite (c = ∞∞ ), so that any finite velocity of particles is very small and the mass of the 

particle can be approximated by its rest mass (m = m0).1 For most measurements on the 

lighter elements in the periodic table, non-relativistic quantum mechanics is sufficient, since 

the velocity of an electron is small compared to the speed of light. For the heavier elements in 

the periodic table (Au, Hg, Pb, Tl ...etc.) the picture is entirely different. As an example of the 

considerable influence of relativistic effects, the radial expansion of the 6s orbital of the 

Cesium atom is reduced by 10%, due to these effects. 2,3 



As a result for the heavy atoms, the inner electrons attain such high velocities 

comparable to that of light that non-relativistic quantum mechanics is far from adequate. The 

difference between non-relativistic results and relativistic results stems from the "true“ 

velocity of light. We can define relativistic effects, in general, as the difference in the results 

obtained with the true velocity of light and infinite velocity of light. Furthermore, relativistic 

effects can be divided into a number of categories such as the mass-velocity correction, 

Darwin correction, spin-orbit correction, spin-spin interaction, Breit interaction etc. 

 The importance of relativistic effects in chemistry has only been fully recognized since 

the seventies.4 For heavy elements (from Cu, in any case from Ag on ) relativistic effects 

should be included when performing ab initio calculations. Very precise calculations, 

however, have shown that already for H2
+  and H 2, relativistic effects contribute to the total 

energy (e.g. the relativistic contribution to the bond energy for H 2 is −1.43 cal/mol).5,6,7 



1.2 Kinematic Effects 

 

The mass-velocity correction is the correction to the kinetic energy of the electron arising 

from the variation of its mass with velocity. The relativistic mass increase (∆m m m= − 0), as 

a function of the velocity of a moving particle, is given by (special theory of relativity): 
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As the mass of an electron is correlated with its kinetic energy and therefore, with its distance 

to the nucleus, the mass-velocity effects causes an increased kinetic energy leading to a 

shorter electron-nucleus distance and thus, especially inner orbitals "shrink“. The conclusion 

we can draw is that the non-relativistic Hamiltonian (in which only the rest masses occur) 

underestimates kinetic energies. Relativistic effects which are spin-independent are often 

called kinematic effects. 

 

 



1.3 Spin-Orbit-Coupling 

 

As the non-relativistic Hamiltonian is "spinless", it is obvious that no coupling between 

orbital angular momenta and spin can be considered. The electron, due to its spin possesses a 

magnetic moment. Further, a magnetic moment is associated with the angular momentum. 

The coupling is caused by the "spinning" electrons acting as tiny magnets, which interacts 

with the field caused by its motion around the nucleus. This interaction mathematically 

corresponds to the summation of both vectors (operators) yielding the total angular 

momentum J  which again is quantized. The magnitude of the spin-orbit splitting caused by 

this interaction is roughly proportional to Z4, where Z is the nuclear charge; splittings 

therefore increase very rapidly down the Periodic Table. Spin-orbit coupling can allow an 

atom to undergo a transition which would otherwise be forbidden by selection rules, such as 

transition from a singlet to a triplet state. 

 The coupling of each individual angular momentum of the electrons yields the (total) 

angular momentum, L . The coupling of each individual spin angular momentum yields the 

total spin angular momentum, S . The summation of L  and S  yields the total angular 

momentum, J , of an electronic system which is called LS- or Russel-Saunders-coupling. 

Here the interactions between electrons dominate, and the magnetic interaction can be thought 

of as small perturbations. This is a good approximation for light and medium-heavy atoms: 

 

L S s s s J L S= + + = + + ⇒ = +l l l1 2 1 2... ; ...N N . 

 

 For heavy atoms, where the magnetic effects due to the spin are much more important, 

the j-j-coupling must be applied. Firstly, the angular momentum, l i , and the spin angular 

momentum, si, of each individual electron is coupled to give the total individual angular 

momentum, j i , of the considered electron. Now all individual total angular momenta of the 

electrons are summed, yielding the total angular momentum of the entire electronic system: 
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The spin-orbit correction arises from strong coupling of the spin of the electrons with 

the orbital angular momentum. It is often said that coupling of spin and orbital angular 

momenta mixes the multiplicities of terms, and so, for example, singlet terms acquire some 



triplet nature, and vice versa. L and S are then said not to be "good" quantum numbers. This is 

especially true for the electronic states of heavier atoms which arise from open-shell 

configurations. 

 The Breit interaction, mentioned in the introduction, is the two-electron counterpart 

of the spin-orbit interaction. The Darwin correction is the characteristic outcome of the 

Darwin relativistic equation. There does not seem to be a simple physical explanation for this 

effect. The starting point of most relativistic quantum-mechanical methods is the Dirac 

equation, which is the relativistic analog of the Schrödinger equation: 

 

H EDΨ Ψ= , 

 

where the HD  is the Dirac Hamiltonian for a many-electron atom. For the reader who is 

interested in the derivation of the Dirac equation and the explicit form of the Dirac 

Hamiltonian we refer to the literature. 

 



1.4 The Impact of Relativistic Effects 

 

Relativistic effects have a significant influence on the electronic properties of heavy atoms 

and molecules containing heavy atoms. Let us now look at some of these. 

  

Figure 2 Relativistic vs nonrelativistic energy levels of the Au frontier orbitals. 

 

 
 

 The inner s orbitals are the closest to the nucleus, and thus in the case of heavy atoms 

experience the high nuclear charge. Hence, the inner s orbitals "shrink" as a result of the 

mass-velocity correction. This, in turn, shrinks the outer s orbitals, as a result of orthogonality. 

Consequently, the ionization potential is also raised. The p orbitals are also contracted by 

mass-velocity corrections, but to a lesser extent, since the angular momentum keeps the 

electrons away from the nuclear regions. However, the spin-orbit interaction splits the p 

shells into p1/2 and p3/2 subshells and expands the p3/2. The net result is that the mass-

velocity and spin-orbit interactions tend to cancel for the p3/2 shell but are additive for the p1/2. 

The d-orbitals are destabilized (Figure 2) 

 Spin-orbit interactions alters the spectroscopic properties of molecules containing 

heavy elements to a considerable extent. Even if a molecule has a closed-shell ground state, 

the excited states may stem from open-shell electronic configurations, in which case the spin-

orbit interaction not only splits the excited states, but mixes different excited states which 

would not mix in the absence of spin-orbit interaction. 
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 The Lanthanide contraction (the decrease of radii from La to Lu) is usually 

attributed to incomplete shielding of the 4f shell. However, this effect must partly be 

attributed to relativistic effects. If the non-relativistic Hartree-Fock and Dirac-Fock results are 

compared, a contribution of about 27% from relativistic effects is obtained. 

 



 

1.5 Silver and Gold  

 

Nowhere in the periodic table are the relativistic effects more pronounced than in gold 

chemistry.8 The relativistic contraction of the 6s shell in the elements Cs (Z = 55) to Fm (Z = 

100) shows a maximum for Au.9,10 The contraction increases considerably when the 4f shell 

is being filled and strikingly when the 5d shell is filled.  The pronounced local maximum of 

the contraction at gold, (5d)10(6s)1, makes Au a unique element, even from this point of view.  

Figure 1.2 illustrates the nonrelativistic and quasi-relativistic energy levels of the Au frontier 

orbitals and nicely demonstrates how close the 6s and 5d orbitals are in energy in the 

relativistic picture.  In agreement with this, the yellow color of gold can also be attributed 

to a relativistic effect. The absorption is attributed to the 5d-to-Fermi level transitions which 

set in around 2.3 eV in Au.  Thus gold reflects the red and yellow and strongly absorbs the 

blue and violet.  The 4d-5s distance of silver is much larger, due to weaker relativistic effects 

(NB The non-relativistic electronic band structures of the two metals are very similar).11  

The chemical difference between silver and gold has received a great deal of attention 

during the history of chemistry.12  It seems to be mainly a relativistic effect.13  The relativistic 

effects push the s and p AOs down in energy (effect i) and the d AOs up (effect iii, See Figure 

1.2).  Moreover, the d AOs suffer a spin-orbit splitting (effect ii).  All three effects are much 

larger for Au than for Ag.   The relativistic contraction of the Au 6s shell qualitatively 

explains the shorter and stronger covalent bonds , as well as the larger ionization potential 

and electron affinity of gold.14,15  The relativistic destabilization of the Au 5d shell 

qualitatively explains the trivalence of gold.  Besides this energetic effect, the larger radial 

extension of the 5d shell may also play a role.16 

 



1.6 The Aurophilicity of Gold  

 

Though the strong aurophilicity of gold which leads to cluster formation may not be 

described by Lewis-basicity in the classical definition. The formation of clusters containing 

direct Au-Au interactions falls within the scope of the relativistic discussion in this chapter.  

Closed-shell metal cations such as AuI ([Xe]4f145d10) would normally be expected to repeal 

one another.  By the end of the 1980s, however, there was sufficient crystallographic evidence 

of attractions between gold(I) cations to lead Schmidbaur to introduce the term "aurophilic 

attraction" or "aurophilicity".17 Given that so much of gold chemistry is influenced by 

relativity, it was natural to inquire as to whether the aurophilic attraction is also a relativistic 

effect. Görling et al. 18 used Ellis’ DV-Xα density functional method to study the electronic 

structure of a fascinating series of gold cluster compounds, the main-group-element-centered 

octahedral complexes [{(H3P)Au}6Xm]m+ (X1 = B, X2 = C, X3 = N). These compounds, which 

may be formally regarded as containing gold(I) cations, feature quite short, "aurophilic" Au-

Au distances. Much of the study focused on the role of the gold 5d AOs in Au-Au bonding.  

d-Orbital participation can, of course, be achieved only if the formal d10  configuration is 

broken, e.g. through 6s/5d hybridization. The conclusion was that there is a prominent 

contribution of the gold 5d AOs to the Au-Au bonding within the cluster, via 6s/5d 

hybridization in the MOs of a1g symmetry.  Furthermore, it was argued that the effect has its 

origin in the relativistic modification of the gold valence AO energies, which brings the 

energies of 5d and 6s orbitals into close proximity. 

 

1.7 Mercury 

 

The relativistic contraction of the filled (6s)2 shell of mercury makes it more inert, "almost a 

rare gas" or "pseudohelium".  The relativistic interatomic potential V(Hg...Hg) is estimated to 

have only 45% of the depth of the non-relativistic one.  To establish definitively why in group 

11 cadmium is solid but mercury a liquid at room temperature, detailed calculations are 

needed.  Probably, the explanation is relativistic.   

An analogues question would be, why gallium is a liquid (mp = 29.8°C despite a high 

bp = 2205°C)?  Perhaps the best answer is that already its crystal structure is very 

complicated.  The alkali metals have both low mp's and low bp's. Ashcroft 19 attributes the 

complicated crystal structure of gallium to core-core van der Waals interactions which are 

large compared to the screened Coulomb interactions in the metal. 



2.1  The Pseudopotential Method 

 

The pseudopotential method is an elegant, approximation which accounts for the most 

important relativistic effects and decreases the computational costs of calculation involving 

heavy elements.20 

 Assuming the validity of the Born-Oppenheimer approximation, the task is to evaluate 

what happens if the core electrons are separated from the valence electrons . In this case, the 

valence electrons can be treated as if they were moving in an effective potential, generated 

by the core electrons (and the nuclei). This procedure (the pseudopotential method) utilizes 

the fact that only valence electrons take part in chemical bond formation. With this 

assumption, calculations can be done using the valence basis set only. The cores (inner-shell 

electrons and the atomic nucleus) of the individual atoms are approximated through a non-

local effective potential, the pseudopotential. This potential must satisfy Pauli’s principle, 

which means the valence atomic orbitals (AO) must be orthogonal to the core AOs: 

 

Ψ Ψv c = 0. 

 

Separating core and valence electrons leads to an electronic Hamiltonian which describes only 

the valence electrons H v . The basis set for orthonormal orbitals belonging to the core 

subspace must now be determined. This problem is reduced to the minimization of the energy 

functional: 

 

E H
v v v v= Ψ Ψ , 

 

The normalized valence orbitals have to satisfy the above mentioned orthogonality condition. 

The orthogonality condition allows the definition of a projection operator, P : 

 

P i
c

i
i
c= ∑ Ψ Ψ , 

 

which satisfy the relationship: P c cΨ Ψ= . The complementary projection operator is 

defined as: 

 



Q Pc cΨ Ψ= − =( )1 0 .  

 

The valence orbitals may be specified with the help of these operators and the pseudo 

orbitals Ψ p :  

 

Ψ Ψ Ψv p pQ P= = −( )1 . 

 

The pseudoorbitals are not necessarily orthogonal to the core orbitals. The minimization of 

the energy is then given by: 

E Q H Qv p v p= Ψ Ψ . 

 

The orthonormalizing condition for Ψ v  can be introduced by using the method of Lagrange 

undetermined multipliers:  

 

Q Qp pΨ Ψ = 1, 

 

As a result of the functional variation, δΨ p , with constraints the following eigenvalue 

equation results: 

 

H Eps p v pΨ Ψ=  

 

with pseudo-Hamiltonian (VR
GPK = generalized Phillips-Kleinman pseudopotential): 

 

H H V H P H P H P PH E Pps v
R
GPK v v v v v= + = + − − +( ) . 

 

The form of the pseudo-Hamiltonian is not appropriate, as it contains not only one-electron 

and two-electron operators, but also multi-electron integrals. For this reason an effective 

valence Hamiltonian is introduced, for which there are different approaches. 

 The valence pseudoorbitals may be chosen to be in the form of a linear combination of 

valence and core orbitals: 

 



Ψ Ψ Ψp v
i
c

i
c

i

core
a= + ∑ , 

 

The ai
c  coefficients can be variationally determined.  

 The following problems must be considered when solving the pseudopotential 

equation:21 

 

• The core orbitals should be known in order to determine an effective valence 

Hamiltonian 

• The pseudopotential is a function of the pseudoorbitals so that an iterative procedure 

must be used (See SCF method): 

 - solution of the HF equation: H Ecore c core cΨ Ψ=  for core orbitals 

 - an estimate of the energy E v , 

 - diagonalization of the matrix of the pseudo-Hamiltonian H ps eff, and the 

   calculation of the lowest energies E v  by applying the SCF method. 

 

In practice, semiempirical approaches are applied in which the pseudoorbitals and the 

corresponding pseudopotentials are constructed from the known (experimentally observed or 

calculated ) atomic energy values. 

  

 Depending on the analytic form generally three types of pseudopotentials are applied: 

Local, semi-local and non-local. In practice, semi-local pseudopotentials are used which will 

be discussed in more detail.22  

 

As pointed out before, within the pseudopotential procedure, only the valence electrons, or the 

electrons in the (n-1)th shell, are explicitely considered (in contrast to all-electron 

calculations). In this case, the electronic Hamiltonian can be reduced to an atomic valence 

operator, H val (the indices, i and j, denote only valence electrons!) 
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where V i( )r  represents an one-component, (spin-orbit-averaged) quasi-relativistic 

pseudopotential:23 
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P l  is the projection operator onto the subspace with angular symmetry l : 
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The pseudopotential parameters , the coefficients, A kl  and the exponential parameters, αlk , 

are adjusted to total-valence energies, derived from numerical all-electron calculations in the 

following way. Firstly, non-relativistic HF and quasi-relativistic Wood-Boring (WB) 

calculations are carried out for the core system and for several low-lying neutral and ionic 

states of the atoms , by considering all electrons variationally.24 In the quasi-relativistic 

calculation, the mass-velocity term and the (averaged) Darwin spin-orbit term are taken 

into account, being the major relativistic corrections. A mass-velocity term and a Darwin term 

are added to the non-relativistic Hartree-Fock operator Fi
nr  for the ith orbital:25 
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A more detailed description can be found in literature. 

 The pseudopotentials for atoms can be used for molecules containing heavy atoms. 

These potentials can easily be implemented in quantum mechanical programs. The 

pseudopotential approximation is not exact. This is especially true when applying atomic 

pseudopotentials for molecular problems. However, pseudopotential methods can be very 

effective, e.g. for coordination compounds. They enable the use of extended valence orbital 

basis sets which, with the limited speed and capacity of existing computers, can lead to results 

superior to those obtained by ab initio calculations with small basis sets.  



 

2.2 A few hints for practical calculations 

 

Some of the simple hints for practical applications of effective core potentials given in the 

following may appear to be trivial or superuous for some of the readers, but experience during 

the last years showed that they may be welcome by the more application-oriented ones who 

are less familiar with the methods. Effective core potentials are usually a good and safe choice 

when properties related to the valence electron system are to be investigated. It should always 

be remembered, however, that the size of the core not only determines the computational 

effort, but it also inuences the accuracy of the results. Small-core and medium-core 

potentials are usually safe to use, whereas the range of large-core potentials is much more 

limited. In the latter case it might be important to include a core-core and/or core-nucleus 

repulsion correction as well as a core polarization potential. It is not a wise decision to 

simply neglect these terms, e.g., because the CPP (Core Polarization Pseudopotential) is not 

implemented in GAUSSIAN yet. When using an effective core potential for the first time 

always do an atomic test calculation first, e.g., for the ionization potential or electron affnity, 

in order to check the correctness of your input and/or the programs library data. Especially in 

pseudopotential calculations well-known sources of input errors are the 1/rn prefactors used in 

some parametrizations or the presence/absence of a local potential. It is recommended to use 

the valence basis set coming with the  effective core potential, possibly augmented by 

additional diffuse and polarizations functions. Especially in case of pseudopotentials, where 

the detailed innermost shape of the pseudoorbitals is essentially arbitrary, it is not 

recommended to use (contracted) all-electron basis sets or valence basis sets from other 

potentials, since significant basis set superposition errors  may result. However, the added 

diffuse and polarization functions may safely be taken from all-electron or other effective core 

potential basis sets. When comparing to other all-electron or valence-only calculations use 

basis sets and correlation treatments of the same quality and make sure that relativistic effects 

are included at similar levels. Note that in all-electron calculations basis set superposition 

errors tend to be larger than in valence-only calculations. 



2.3 ECP input format 

 

The PSEUDO keyword requests that a model potential be substituted for the core electrons. 

Gaussian 98/94 (compared to older versions) supports a new effective core potential (ECP) 

input format (similar to that used by ExtraBasis) which is described below. When reading-in 

pseudopotentials, do not give them the same names as any internally-stored pseudopotentials: 

CEP (Compact Effective Potentials), CHF, LANL1, LANL2, LP-31, SDD and SHC. 

 

ECP input without pseudo keyword: 

#hf/sdd opt gfinput 

blank line 

Au-F using pseudopotentials for Au but NOT for F (6111,41) basis set 

blank line 

0,1 

Au 

F 1 1.9 

 

The PSEUDO keyword can be used in connection with the following option:   

Read Means : Read pseudo-potential data from the input stream.  

 

#HF/GEN PSEUDO=READ gfinput 

 

Effective Core Potential operators are sums of products of polynomial radial functions, 

Gaussian radial functions and angular momentum projection operators. ECP input therefore 

specifies which potential to use on each atomic center, and then includes a collection of 

triplets of:  

(coefficient, power of R, exponent)  



for each potential for each term in each angular momentum of the ECP. Since only the first 

few angular momentum components have different terms, the potential is expressed as (1) 

terms for the general case, typically d or f and higher projection, and (2) the extra terms for 

each special angular momentum. Thus for an LP-31G potential, which includes special s and 

p projected terms, the input includes the general (d and higher) term, the s-d term (i.e., what to 

add to the general term to make the s component) and the p-d term. 

All ECP input is free-format. Each block is introduced by a line containing the center 

numbers (from the molecule specification) and/or atomic symbols, specifying the atoms 

and/or atoms types to which it applies The list ends with a value of 0.  

The pseudo-potential for those centers/atoms follows: 

Name,Max,Icore 

Name of the potential, maximum angular momentum of the potential (i.e., 2 if there are 

special s and projections, 3 if there are s, p, and d projections), and number of core electrons 

replaced by the potential. If Name matches the name of a previous potential, that potential is 

reused and no further input other than the terminator line (see below) is required. 

For each component (I=1 to Max) of the current potential, a group of terms is read, containing 

the following information: 

Title 

A description of the block, not otherwise used. 

Nterm 

Number of terms in the block. 

NPower,Expon,Coef 

Power of R, exponent, and coefficient for each of the NTerm terms. NPower includes the R2 

Jacobian factor. 



2.4 Pseudopotentials of the Stuttgart/(Dresden) Köln group 

 

The energy-consistent pseudopotentials of the Stuttgart/Köln group are semi-local 

pseudopotentials adjusted to reproduce atomic valence-energy spectra. The adjustment of the 

pseudopotential parameters has been done in fully numerical calculations, valence basis sets 

have been generated a-posteriori via energy optimization. The complete set of potentials 

includes one-component (non-relativistic and scalar-relativistic) effective-core potentials 

(ECP), spin-orbit (SO) and core-polarization potentials (CPP).  

 

In Pseudo input, keywords for these ECP's are of the form ECPXYn where n is the number of 

core electrons which are replaced by the pseudopotential and X denotes the reference system 

used for generating the pseudopotential (S for a single-valence-electron ion or M for a neutral 

atom). 

Y specifies the theoretical level of the reference data: HF for Hartree-Fock, WB for Wood-

Boring quasi-relativistic and DF for Dirac-Fock relativistic. For one- or two-valence electron 

atoms SDF is a good choice; otherwise MWB or MDF is recommended (although for small 

atoms or for the consideration of relativistic effects, the corresponding SHF and MHF 

pseudopotentials may be useful). 

For light atoms, or for the discussion of relativistic effects, the corresponding SHF, 

MHF pseudopotentials may be useful. The same keyword applies to the set of pseudopotential 

parameters and the corresponding optimized valence basis sets. 

 

Keyword in Gaussian for Pseudopotentials and corresponding valence basis sets of the 
Stuttgart/Köln group 

 

SDD 

 

Requests an effective pseudopotential of the Stuttgart/Köln goup. Let’s have a look at a 

typical input example for the HI molecule using an all-electron basis set for hydrogen and a 

SDD pseudopotential for iodine (or see above the AuF example with ECPs for Au and F). 



%kjob l301     Test job kills program after l301 

#hf/gen  pseudo=read  gfinput 
 
blank line 
 
i-ecp-mwb 4 46 (4 = l’s with l = 0,1,2,3; 46 = # core electrons) 
blank line 
 
0,1 
H 
I    1    2.0 
 
blank line 
 
H 0 
6-31G(d,p)     name of the all electron basis set for H 
**** 
I 0 
SDD      name of valence basis set for iodine 
**** 
 
blank line 
 
I 0      ECPs for the iodine atoms 
SDD      name 



Output 

… 
General basis read from cards:  (5D, 7F) 
 AO basis set in the form of general basis input: 
  1 0 
 S   3 1.00       0.000000000000 
      0.1873113696D+02  0.3349460434D-01 
      0.2825394365D+01  0.2347269535D+00 
      0.6401216923D+00  0.8137573261D+00 
 S   1 1.00       0.000000000000 
      0.1612777588D+00  0.1000000000D+01 
 P   1 1.00       0.000000000000 
      0.1100000000D+01  0.1000000000D+01 
 **** 
  2 0 
 S   3 1.00       0.000000000000 
      0.2122765000D+01  0.2063429899D+01 
      0.1770481000D+01 -0.2869526473D+01 
      0.3130840000D+00  0.1404747074D+01 
 S   1 1.00       0.000000000000 
      0.1240710000D+00  0.1000000000D+01 
 P   3 1.00       0.000000000000 
      0.2432887000D+01  0.7732753148D+00 
      0.2137249000D+01 -0.1020833156D+01 
      0.3145460000D+00  0.1095666871D+01 
 P   1 1.00       0.000000000000 
      0.1049450000D+00  0.1000000000D+01 
 P   1 1.00       0.000000000000 
      0.3264100000D-01  0.1000000000D+01 
 **** 
 
… 



 ================================================================ 
 Pseudopotential Parameters  
================================================================ 
  Center   Atomic    Valence    Angular     Power                                                Coordinates 
  Number Number   Electrons Momentum  of R    Exponent      Coefficient        X     Y     Z 
 ================================================================ 
    1            1                                                                                                   0.000  0.000 -3.709 
                                   No pseudopotential on this center. 
    2           53               7                                                                                  0.000  0.000  0.069 
                                                  G and up  
                                                                     2         1.0000000        0.00000000 
                                                  S - G 
                                                                     2        3.5112000       83.11386300  
                                                                     2        1.7556000        5.20187600 
                                                  P - G 
                                                                    2        2.9688000       82.81110900 
                                                                    2        1.4844000        3.37968200 
                                                  D - G 
                                                                    2        1.9066000       10.30427700 
                                                                    2        0.9533000        7.58803200 
                                                 F - G 
                                                                    2        2.3075000      -21.47793600 
 ================================================================ 
 There are     8 symmetry adapted basis functions of A1  symmetry. 
 There are     0 symmetry adapted basis functions of A2  symmetry. 
 There are     4 symmetry adapted basis functions of B1  symmetry. 
 There are     4 symmetry adapted basis functions of B2  symmetry. 
 Integral buffers will be    262144 words long. 
 Raffenetti 1 integral format. 
 Two-electron integral symmetry is turned on. 
    16 basis functions ,    26 primitive gaussians ,    16 cartesian basis functions 
     4 alpha electrons        4 beta electrons  
       nuclear repulsion energy         1.8521202291 Hartrees. 
… 

--------------------------------------------------------------------------------------------------------------- 

S – G   l = 0 – k = 1 and l = 0 – k = 2 

P – G  l = 1 – k = 1 and l = 1 – k = 2 

D – G   l = 2 – k = 1 and l = 2  - k = 2 

F – G   l = 3 – k =1 
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How can the pseuodopotential explicitly be incorporated? (See format section). 

Input example HI. 

 
%kjob l301 
 
#hf/gen  pseudo=read  gfinput 
  
i-ecp-mwb 4 46 (4 = l = 0,1,2,3; 46 = # core electrons) 
  
0,1 
H 
I 1 2.0 
 
H 0 
6-31G(d,p) 
**** 
I 0 
SDD 
**** 
 
I   0 
I-ECP-mwb    4   46 
G POTENTIAL           
 1 
2          1.00000000        0.00000000 
S-G POTENTIAL        
 2 
2          3.51120000       83.11386300 
2          1.75560000        5.20187600 
P-G POTENTIAL        
 2 
2          2.96880000       82.81110900 
2          1.48440000        3.37968200 
D-G POTENTIAL        
 2 
2          1.90660000       10.30427700 
2          0.95330000        7.58803200 
F-G POTENTIAL        
 1 
2          2.30750000      -21.47793600 
 
These data can easily be obtained from  

(i) http://www.emsl.pnl.gov/forms/basisform.html or  

(ii) http://www.theochem.uni-stuttgart.de/pseudopotentials/. 

 

The last home page (Prof. Werner, Uni Stuttgart) can truly be recommended. 



2.5 (LANL1 and ) LANL2 Pseudopotentials 

 

Keyword: LANL1 or LANL2 (do not work without DZ!) 

Requests the LANL1/2 potentials: describe the core electrons by the Los Alamos National 
Laboratory 2 (LANL2) effective core (by Hay and Wadt 26) 

 

#hf/gen opt gfinput pseudo=read 

blank line 

Au-F using pseudopotentials for Au and F 

blank line 

0,1 

Au 

F 1 1.9 

blank line 

Au 0 
Lanl2DZ     basis set for Au 
**** 
F 0 
6-31G(d)     basis set for F 
**** 

blank line     ECP for Au 

Au 0 
Lanl2DZ 
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