# Inhaltsverzeichnis

| 1.      | Aufgabenstellung                                                                                      | 3        |
|---------|-------------------------------------------------------------------------------------------------------|----------|
| 2.      | Allgemeiner Teil                                                                                      | 4        |
| 2.1.    | Abkürzungen                                                                                           | 4        |
| 2.2.    | Maßeinheiten                                                                                          | 4        |
| 3.      | Kenntnisstand                                                                                         | 5        |
| 3.1.    | Schwefel-Stickstoff-Verbindungen                                                                      | 5        |
| 3.2.    | Schwefel-Stickstoff-Halogen-Verbindungen                                                              | 6        |
| 3       | 2.1. Thiazylfluorid NSF                                                                               | 6        |
| 3       | 2.2. Thiazylchlorid NSCl                                                                              | 7        |
| 3       | 2.3. Thiazyldichlorid [NSCl <sub>2</sub> ] <sup>-</sup>                                               | 8        |
| 4.      | Ergebnisse und Diskussion                                                                             | 9        |
| 4.1.    | Das Dithiatriazacyclopentadieniumkation                                                               | 9        |
| 4       | 1.1. Darstellung des $S_2N_3^+$                                                                       | 9        |
| 4       | 1.2. Reaktion von $S_2^{2^+}$ mit $N_3^-$                                                             | 11       |
| 4.2.    | Struktur und Bindung im S <sub>2</sub> N <sub>3</sub> <sup>+</sup>                                    | 11       |
| 4       | 2.1. Schwingungsspektroskopische Untersuchungen von $S_2N_3^+$                                        | 14       |
| 4       | 2.2. Struktur und Bindung im $Hg_3Cl_{10}^+$                                                          | 16       |
| 4.3.    | $[S_2N_3]^+[ZnCl_4]^2$                                                                                | 18       |
| 4       | 3.1. Molekülstruktur des $S_4N_3^{2+}$ [FeCl <sub>4</sub> ] <sub>2</sub>                              | 18       |
| 4.4.    | Umsetzung von [Ph <sub>4</sub> P] <sup>+</sup> [NSCl <sub>2</sub> ] mit MCl <sub>2</sub> [M = Cu, Hg] | 19       |
| 4       | 4.1. Molekülstruktur von $[Ph_4P]^+_2[HgCl_4]^2$                                                      | 20       |
| 4       | 4.2. Molekülstruktur von $[Ph_4P]_2[Cu_2Cl_6]^2$                                                      | 21       |
| 4.5.    | Umsetzung von $[Ph_4P]^+[NSCl_2]^-$ mit AgX $[X = CN^-, OCN^-, SCN^-]$                                | 22       |
| 4       | 5.1. Molekülstruktur von $[Ph_4P]^+_2[Pd(SCN)_4]^{2-1}$                                               | 23       |
| 4.6.    | Berechnungen zu Thiazylverbindungen                                                                   | 25       |
| 4       | .6.1. Das Thiazylkation $NS^+$                                                                        | 25       |
| 4       | 6.2. Thiazylchlorid NSCl                                                                              | 26       |
| 4       | 6.3. Das Cyanidion CN                                                                                 | 27       |
| 4       | 6.4. I hiazyinitrii NSUN                                                                              | 28       |
| 4       | 6.6 Thioryldiconitril Anion [NS(NC)] <sup>1</sup>                                                     | 30<br>22 |
| 4       | 6.7. Thiazyldinitril Anion $[NS(NC)_2]$                                                               | 32       |
| - 4     | $6.8 \qquad \text{Rhodenid-Anion SCN}^{-1}$                                                           | 35       |
| -+<br>⊿ | 6.9 Thiazylthiocyanat NSSCN                                                                           | 35       |
| 4       | 6.10. Thiazylisothiocyanat NSNCS                                                                      | 30       |
|         |                                                                                                       |          |
| 5.      | Zusammenfassung                                                                                       | 38       |
| 6.      | Experimenteller Teil                                                                                  | 40       |
| 6.1.    | Arbeitstechnik                                                                                        | 40       |

| 0.2. A         | usgangsverbindungen und Losennitter                                                                                     |    |
|----------------|-------------------------------------------------------------------------------------------------------------------------|----|
| 6.3. A         | nalysemethoden                                                                                                          | 4  |
| 6.4. D         | arstellung der Ausgangschemikalien                                                                                      | 4  |
| 6.4.1.         | (NSCI) <sub>3</sub>                                                                                                     | 4  |
| 6.4.2.         | $[Ph_4P]^+[NSCl_2]^-$                                                                                                   | 4  |
| 6.4.3.         | AgSCN                                                                                                                   | 4  |
| 6.4.4.         | AgCN                                                                                                                    | 44 |
| 6.4.5.         | AgOCN                                                                                                                   | 4  |
| 6.4.6.         | $[Ph_{4}P]^{+}[CN]^{-}$                                                                                                 | 4  |
| 6.4.7.         | [Ph <sub>4</sub> P] <sup>+</sup> [SCN] <sup>-</sup>                                                                     | 4  |
| 6.4.8          | $[Ph_4P]^+[OCN]^-$                                                                                                      | 4  |
| 6.4.9.         | $CuNO_3 * 4MeCN$                                                                                                        | 4  |
| 6.5. U         | ntersuchte Reaktionen                                                                                                   | 4  |
| 6.5.1.         | Darstellung von Hg(NSCl <sub>2</sub> ) <sub>2</sub>                                                                     | 4  |
| 6.5.2.         | (NSCl) <sub>3</sub> mit HgCl <sub>2</sub> (2:3, ohne Hexan)                                                             | 5  |
| 6.5.3.         | Darstellung von $[S_2N_3]^+$ $[Hg_3Cl_{10}]^4$                                                                          | 5  |
| 6.5.4          | $(NSCI)_2 \text{ und } ZnCI_2 (2:3)$                                                                                    | 5  |
| 655            | $(NSCI)_{2}$ und $ZnCI_{2}(4:3)$                                                                                        | 5. |
| 656            | $(NSCI)_{a}$ und $CdCl_{a}$ (7.3)                                                                                       | 5  |
| 657            | $(NSCI)_{2}$ und $CdCI_{2}$ (2.3)                                                                                       | 5. |
| 658            | (NSCI), and $AuCl$                                                                                                      | 5  |
| 650            | (NSCI), und CuCl                                                                                                        | 5  |
| 6 5 10         | $(NSCI)_3$ und $CuCl_2$<br>$(NSCI)_3$ und $EaCl_3$                                                                      | 5  |
| 6.5.10.        | (NSCI) <sub>3</sub> und PCI                                                                                             | 5  |
| 6 5 12         | (NoCI)3 und DCI3                                                                                                        | 0  |
| 0.3.12.        | NalN <sub>3</sub> und $S_2 Cl_2$                                                                                        | 0  |
| 0.5.15.        | $(CH_3)_3 SIN_3$ und $S_2 Cl_2$                                                                                         | 0. |
| 6.5.14.        | $[Pn_4P]$ $[NSCl_2]$ und $HgCl_2$                                                                                       | 6. |
| 6.5.15.        | $[Ph_4P]$ [NSCl <sub>2</sub> ] und CuCl <sub>2</sub>                                                                    | 64 |
| 6.5.16.        | $[Ph_4P]$ [NSCl <sub>2</sub> ] und AgSCN bei RT                                                                         | 6. |
| 6.5.17.        | $[Ph_4P]$ $[NSCl_2]$ und AgSCN bei $-70^{\circ}C$                                                                       | 6  |
| 6.5.18.        | $[Ph_4P]$ $[NSCl_2]$ und AgSCN mit $(PdCl_2PEt_3)_2$ als Komplexbildner                                                 | 6  |
| 6.5.19.        | $[Ph_4P]'[NSCl_2]'$ und AgSCN mit CuNO <sub>3</sub> * 4 MeCN als Komplexbildner                                         | 6  |
| 6.5.20.        | $[Ph_4P]^+[NSCl_2]^-$ und AgCN                                                                                          | 6  |
| 6.5.21.        | $[Ph_4P]^{\dagger}[NSCl_2]^{\dagger}$ und AgCN mit $(PdCl_2PEt_3)_2$ als Komplexbildner                                 | 70 |
| 6.5.22.        | [Ph <sub>4</sub> P] <sup>+</sup> [NSCl <sub>2</sub> ] <sup>-</sup> und AgOCN bei RT                                     | 7  |
| 6.5.23.        | $[Ph_4P]^+[NSCl_2]^-$ und AgOCN bei $-70^{\circ}C$                                                                      | 72 |
| 7. Anh         | ang                                                                                                                     | 7  |
| 7.1. K         | ristallographische Daten $[S_2N_3]^4 [Hg_3Cl_{10}]^4$                                                                   | 7: |
| 7.2. K         | ristallographische Daten $[S_2N_3]^+_2[Hg_2Cl_6]^2$ -                                                                   | 8  |
| 7.3. K         | ristallographische Daten [S <sub>4</sub> N <sub>3</sub> ] <sup>+</sup> [FeCl <sub>4</sub> ] <sup>-</sup>                | 8  |
| 7.4. K         | ristallographische Daten [Ph <sub>4</sub> P] <sup>+</sup> <sub>2</sub> [Cu <sub>2</sub> Cl <sub>6</sub> ] <sup>2-</sup> | 92 |
| 7.5. K         | ristallographische Daten [Ph <sub>4</sub> P] <sup>+</sup> <sub>2</sub> [HgCl <sub>4</sub> ] <sup>2-</sup>               | 10 |
| 7.6. K         | ristallographische Daten [Ph <sub>4</sub> P] <sup>+</sup> <sub>2</sub> [Pd(SCN) <sub>4</sub> ] <sup>2-</sup>            | 10 |
| о т <i>ч</i> . | rotur                                                                                                                   | 10 |

# 1. Aufgabenstellung

Aufgabe und Ziel der vorliegenden Arbeit war es, die Eigenschaften von NSCl bzw. dessen Trimeren (NSCl)<sub>3</sub> als Chlorid-Donor bzw. -Akzeptor zu untersuchen. Dazu wurden die Umsetzungen von NSCl mit unterschiedlichen Metallchloriden eingehend untersucht. Die Produkte sollten charakterisiert und die erhaltenen Schwingungsspektren mit den Ergebnissen aus quantenmechanischen Rechnungen verglichen und diskutiert werden. Um genaue Strukturdaten zu erhalten, sollte versucht werden, Einkristalle zu züchten.

Des weiteren sollten die Umsetzungen des kürzlich entdeckten NSCl<sub>2</sub><sup>-</sup> mit verschiedenen Metallchloriden untersucht werden.<sup>1</sup> Hier sollten die Eigenschaften des NSCl<sub>2</sub><sup>-</sup> als Chlorid-Donator festgestellt werden. Ein weiteres Ziel der vorliegenden Arbeit sollte es sein, das NSCl<sub>2</sub><sup>-</sup> mit Hilfe von Metallzentren zu stabilisieren, bisher ist dies nur mit sperrigen organischen Substituenten gelungen. Bei der Untersuchung der entstehenden Produkte sollten Schwingungs-, Kernresonanz- und Röntgenstrukturanalyse helfen. Die erhaltenen Messergebnisse und die Ergebnissen aus quantenmechanischen Rechnungen sollten verglichen und diskutiert werden.

Zum Abschluss der Arbeit sollte versucht werden, ob ein Halogen-/ Pseudohalogen-Austausch am  $NSCl_2^-$  möglich ist. Die entstehenden Spezies sollten dabei schwingungsspektroskopisch untersucht werden. Auch hier sollte versucht werden, die entstehenden Produkte zu kristallisieren und mittels Einkristallstrukturanalyse zu charakterisieren.

# 2. Allgemeiner Teil

### 2.1. Abkürzungen

Die in der vorliegenden Arbeit verwendeten Abkürzungen sind in Tabelle 1 aufgeführt.

| Abb.  | Abbildung              | MO                    | molecular orbital                |
|-------|------------------------|-----------------------|----------------------------------|
| Tab.  | Tabelle                | δ                     | Chem. Verschiebung (NMR)         |
| RT    | Raumtemperatur         | (s)                   | Fest (solid)                     |
| TT    | Tieftemperatur (-70°C) | (1)                   | Flüssig (liquid)                 |
| Ph    | Phenyl-                | (g)                   | Gasförmig (gaseous)              |
| Me    | Methyl-                | IR                    | Infrarot                         |
| Et    | Ethyl-                 | ν                     | Streckschwingung                 |
| S.    | Seite                  | δ                     | Deformationsschwingung           |
| s.    | Siehe                  | <sub>s</sub> (Index)  | Symmetrisch (Schwingungssp.)     |
| min.  | Minimal                | <sub>as</sub> (Index) | antisymmetrisch (Schwingungssp.) |
| max.  | maximal                | <sub>ip</sub> (Index) | in-plane- (Schwingungssp.)       |
| mind. | mindestens             | op (Index)            | out-of-plane- (Schwingungssp.)   |

Tabelle 1 Verwendete Abkürzungen

## 2.2. Maßeinheiten

Die im international gültigen Einheitensystem (SI) geltenden Maßeinheiten wurden in der Arbeit verwendet. Davon abweichende, in der Arbeit verwendete, sind in Tabelle 2 aufgeführt.

Tabelle 2 Vom SI-System abweichend verwendete Maßeinheiten

| Größe      | Symbol    | Bezeichnung  | Umrechnung in SI - Einheit               |
|------------|-----------|--------------|------------------------------------------|
| Länge      | Å         | Ångström     | $1\text{\AA}=10^{-10}\text{m}$           |
| Temperatur | °C        | Grad Celsius | °C=K-273.1                               |
| Wellenzahl | $cm^{-1}$ | Wellenzahl   | $1 \text{ cm}^{-1} = 100 \text{ m}^{-1}$ |
| Zeit       | d         | Tag          | 1d=86400s                                |
|            | h         | Stunde       | 1h=3600s                                 |
| Leistung   | mW        | Milliwatt    | $1 \text{mW} = 10^{-3} \text{W}$         |

### 3. Kenntnisstand

#### 3.1. Schwefel-Stickstoff-Verbindungen

Es existieren eine Reihe von SN-Verbindungen (siehe Tabelle 3) unterschiedlicher Zusammensetzung, das Tetraschwefeltetranitrid  $S_4N_4$  soll hier stellvertretend genannt sein. Das Molekül besitzt  $D_{4d}$ -Symmetrie und die selbe Käfigstruktur wie das Mineral Realgar As<sub>4</sub>S<sub>4</sub>.<sup>2,3,4</sup>



Abbildung 1 Struktur des S<sub>4</sub>N<sub>4</sub>

Das Tetraschwefeltetranitrid  $S_4N_4$  ist Ausgangsstoff für viele andere S-N-Verbindungen. So entsteht beispielsweise beim Überleiten von gasförmigem  $S_4N_4$  über Silberwolle bei 300°C im Vakuum [NS]<sub>x</sub> (S<sub>2</sub>N<sub>2</sub> entsteht als Zwischenprodukt).

 $S_4N_4(g) \rightarrow 2 S_2N_2(g) \rightarrow radikalische Polymerisation \rightarrow [NS]_x(s)$ 

Wird  $S_4N_4$  in Toluol zum Sieden erhitzt, so erhält man das ringförmige  $S_4N_2$  (S-Homologes von  $N_2O_4$ ):

$$S_4N_4(s) + \frac{1}{2}S_8(s) \rightarrow 2 S_4N_2(s)$$

| Anionen    | Neutrale Moleküle | Kationen                  |
|------------|-------------------|---------------------------|
| $NS_2^-$   | $S_2N_2$          | $S_3N_2^{2+}, S_3N_2^{+}$ |
| $S_3N_3^-$ | $S_3N_4$          | ${S_3N_5}^+$              |
| $S_6N_5$   | $S_4N_2$          | $S_4N_4^+, S_4N_4^{2+}$   |
| $S_4N_5$   | $S_4N_6$          | $S_4N_3^+$                |
| $S_4N^-$   | $S_5N_4$          | $S_5 N_2^{2+}$            |
|            | $S_6N_6$          | $S_5N_5^+$                |
|            | $S_4N_4$          | $S_5 N_6^{2+}$            |
|            | $[NS]_x$          | $S_6 N_3^{+}$             |
|            | $S_5N_6$          | ${S_6 N_7}^+$             |
|            |                   | ${ m S_7N_6}^+$           |
|            |                   | $SN^+$ , $S_2N^+$         |
|            |                   | $S_4 N_5^+$               |

| <b>Tabelle 3</b> Binäre Schwefel-Stickstoff-Spez | zies |
|--------------------------------------------------|------|
|--------------------------------------------------|------|

Löst man S<sub>4</sub>N<sub>4</sub> in konzentrierter Schwefelsäure, so erhält man das  $7\pi$ -Radikal S<sub>3</sub>N<sub>2</sub><sup>+</sup>. Das Radikal dimerisiert über  $\pi^*\pi^*$ -Wechselwirkungen.<sup>5</sup>



Abbildung 2  $\pi^*\pi^*$ -Wechselwirkungen im S<sub>3</sub>N<sub>2</sub><sup>+</sup> Kation

#### 3.2. Schwefel-Stickstoff-Halogen-Verbindungen

In Schwefelnitridhalogeniden NSX<sub>3</sub> (X = F), (NSX)<sub>n</sub> (n = 1,4 für X = F, n = 1,3 für X = Cl), [NSX<sub>2</sub><sup>-</sup>] (X = F, Cl), N<sub>4</sub>S<sub>4</sub>X<sub>2</sub> (X = F, Cl) und N<sub>2</sub>S<sub>3</sub>X<sub>2</sub> (X = F, Cl;Br) nimmt allgemein die Affinität des Schwefels zu Halogenen steigender Masse ab.

Es existieren viele Fluoride und Chloride; bis jetzt sind jedoch nur ein Bromid ( $N_2S_3Br_2$ ) und keine Iod-Verbindung bekannt.



 $(NSX)_3$ ; X = F, CI

Abbildung 3 (NSX)3; X=F, Cl

#### 3.2.1. Thiazylfluorid NSF

Thiazylfluorid, NSF, ist ein farbloses reaktives Gas, das sich z.B. durch Umsetzen von Tetraschwefeltetranitrid  $S_4N_4$  mit Quecksilber-(II)-fluorid HgF<sub>2</sub> in Dichlormethan darstellen lässt :

$$S_4N_4(s) + 4 HgF_2(s) \rightarrow 4 NSF(g) + 2 Hg_2F_2(s)$$

Es sind noch eine Reihe anderer Darstellungsweisen bekannt; weitere Synthesen können der Literatur entnommen werden.<sup>6</sup>

Der NS-Abstand im gewinkelten NSF entspricht mit 1.446 Å einer N-S-Dreifachbindung, der SF-Abstand entspricht mit 1.646 Å einer F-S-Einfachbindung. Der Winkel im NSF beträgt 116.5°. In flüssiger Phase polymerisiert das Thiazylfluorid zum thermodynamisch stabilen Trimeren (NSF)<sub>3</sub>, welches eine ringförmige Struktur besitzt.

In der Gasphase bei Raumtemperatur und Drücken oberhalb 1bar polymerisiert das Monomer zum thermodynamisch instabilen (NSF)<sub>4</sub>, das ebenfalls eine ringförmige Struktur besitzt. Bei Temperaturen oberhalb 300°C wandelt sich das Tetramere in das Trimere um.



Abbildung 4 Tetramer des NSF

#### 3.2.2. Thiazylchlorid NSCl

Das monomere, ebenfalls gewinkelte Thiazylchlorid NSCl entsteht z.B. durch die Umsetzung von Ammoniumchlorid mit Dischwefeldichlorid und anschließender Chlorierung des entstandenen Trischwefeldistickstoffdichlorids als Trimeres.<sup>7</sup>

$$2 \operatorname{NH}_4\operatorname{Cl}(s) + 4 \operatorname{S}_2\operatorname{Cl}_2(1) \rightarrow \operatorname{S}_3\operatorname{N}_2\operatorname{Cl}_2(s) + 8 \operatorname{HCl}(g) + \frac{5}{8} \operatorname{S}_8(s)$$

$$3S_3N_2Cl_2(s) + 3 Cl_2(g) \rightarrow 2(NSCl)_3(s) + 3 SCl_2(g)$$

Die NS-Bindungslänge beträgt 1.450 Å, die SCI-Bindung ist 2.161 Å lang, der NSCI-Winkel beträgt 117.4°. Thiazylchlorid liegt im festen Zustand als ringförmiges Trimer (NSCl)<sub>3</sub> vor.<sup>6</sup> In Lösung besteht ein temperatur- und reinheitsbedingtes Dissoziationsgleichgewicht <sup>8</sup>:

 $(NSCI)_3$   $\longrightarrow$  3 NSCI

## 3.2.3. Thiazyldichlorid [NSCl<sub>2</sub>]

Neben dem seit längerer Zeit bekannten ternären Thiazyldifluoridanion  $[NSF_2]^-$ , das z.B. durch Reaktion von NSF mit HgF<sub>2</sub> entsteht und eine pyramidale Struktur aufweist, wurde erst vor kurzem das Thiazyldichlorid  $[NSCl_2]^-$  durch Umsetzung von Tetraphenyl-phosphoniumchlorid mit (NSCl)<sub>3</sub> in Dichlormethan in makroskopischem Maßstab dargestellt.<sup>1</sup>

$$(NSCl)_3(s) + 3 [Ph_4P]^+[Cl]^-(s) \rightarrow 3 [Ph_4P]^+[NSCl_2]^-(s)$$

Das Chlorid greift, quantenmechanischen Rechnungen zufolge, barrierefrei am NSCl an; man erhält ein hochpolarisiertes Anion [NSCl<sub>2</sub>]<sup>-</sup>.

Die N-S-Bindung im [NSCl<sub>2</sub>]<sup>-</sup> besitzt eine Bindungsordnung von 2.21 (NS<sup>+</sup> besitzt eine Bindungsordnung von 2.76). Im Gegensatz dazu stehen die schwachen S-Cl-Bindungen (Bindungsordnung 0.23). Die kurze N-S-Bindung 1.436 Å und die langen Bindungsabstände von S und Cl (2.423 Å) wurden experimentell bestätigt. Der ClSCl-Winkel im [NSCl<sub>2</sub>]<sup>-</sup> ist mit 93.3° auffallend klein. Der NSCl-Winkel beträgt aufgrund von abstoßenden Wechselwirkungen zwischen der S-N- $\pi$ -Bindung und den S-Cl- $\sigma$ -Bindungen 112.8°. Die S-N-Dreifachbindung und die S-Cl- $\sigma$ -Bindungen kann durch 2-Elektronen-3-Zentren-Bindung beschrieben werden.



Die labile  $[NSCl_2]^-$ -Einheit wird nur durch sperrige Gegenionen wie  $Me_4N^+$ ,  $Pr_4N^+$ ,  $Ph_4P^+$  etc. stabilisiert.

## 4. Ergebnisse und Diskussion

#### 4.1. Das Dithiatriazacyclopentadieniumkation

# 4.1.1. Darstellung des $S_2N_3^+$

Das  $NSF_2$ -Anion lässt sich, wie schon 1969 gezeigt wurde, <sup>9</sup> im Festkörper mit Hilfe von Metallzentren stabilisieren. So reagiert FC(O)FNSF<sub>2</sub> mit HgF<sub>2</sub> in guten Ausbeuten (80%) zu Hg(NSF<sub>2</sub>).

$$2FC(O)FNSF_2 + HgF_2 \rightarrow Hg(NSF_2)_2 + 2COF_2$$

 $Hg(NSF_2)$  lässt sich thermolytisch quantitativ in  $HgF_2$  und NSF spalten. Es sollte geprüft werden, ob sich diese Thermolysereaktion beim Cl-Analogon  $Hg(NSCl_2)_2$  umkehren lässt, bzw. ob NSCl als Cl<sup>-</sup>-Akzeptor oder –Donator fungiert.

$$2NSCl + HgCl_2 \rightarrow Hg(NSCl_2)_2$$

Die Reaktion wurde, wie unter 6.5.1 bis 6.5.3 beschrieben, bei Raumtemperatur in Dichlormethan durchgeführt. In Lösung (<sup>14</sup>N-NMR) lässt sich neben NSCl bzw. (NSCl)<sub>3</sub> nur NS<sup>+</sup> nachweisen, ein Hinweis, dass NSCl in dieser Reaktion als Cl<sup>-</sup>-Donor fungiert (HgCl<sub>2</sub> ist in CH<sub>2</sub>Cl<sub>2</sub> nur geringfügig löslich).



Abbildung 5 Molekülstruktur des S<sub>2</sub>N<sub>3</sub><sup>+</sup> Kations

Aus der Lösung kristallisiert gelbe Kristalle, die mittels Einkristallröntgenstrukturanalyse untersucht wurden. Man findet ein  $C_s$ -symmetrisches, leicht verzerrtes, ringförmiges  $S_2N_3^+$ -Kation (Abbildung 5) und ein  $Hg_2Cl_6^{2-}$ -Anion (Abbildung 6).

Es liegt nahe, das  $S_2N_3^+$ -Kation als [3+2]Cycloadditionsprodukt von  $N_3^-$  und  $S_2^{2+}$  aufzufassen, was jedoch angesichts der eingesetzten Edukte unwahrscheinlich ist.



Abbildung 6 Molekülstruktur des Hg<sub>2</sub>Cl<sub>6</sub><sup>2-</sup>

Folgender Mechanismus scheint realistischer:

Gelöstes HgCl<sub>2</sub> abstrahiert Cl<sup>-</sup> vom NSCl unter Bildung von HgCl<sub>4</sub><sup>2-</sup>-Anionen und NS<sup>+</sup>-Kationen. HgCl<sub>4</sub><sup>2-</sup> bildet mit einem weiteren neutralen HgCl<sub>2</sub>-Molekül das Anion Hg<sub>2</sub>Cl<sub>6</sub><sup>2-</sup>. Im nächsten Schritt reagieren ein NS<sup>+</sup>-Kation und zwei Moleküle NSCl unter Bildung des S<sub>2</sub>N<sub>3</sub><sup>+</sup>-Rings und SCl<sub>2</sub>.

| $2NSCl + HgCl_2$       | $\rightarrow 2NS^+ + HgCl_4^{2-}$                                             |
|------------------------|-------------------------------------------------------------------------------|
| $2NS^+ + 4NSC1$        | $\rightarrow$ 2 S <sub>2</sub> N <sub>3</sub> <sup>+</sup> + SCl <sub>2</sub> |
| $HgCl_4^{2-} + HgCl_2$ | $\rightarrow$ Hg <sub>2</sub> Cl <sub>6</sub> <sup>2-</sup>                   |
|                        |                                                                               |

 $6NSCl + 2HgCl_2 \rightarrow 2 S_2N_3^+ + Hg_2Cl_6^{2-} + SCl_2$ 

Überschichtet man die  $CH_2Cl_2$ -Phase mit Hexan, so kristallisiert das ringförmiges  $S_2N_3^+$ -Kation mit dem bisher nicht beschriebenen  $Hg_3Cl_{10}^{4-}$ -Anion aus. Leider sind die Ausbeuten der Reaktionen aufgrund der geringen Löslichkeit des  $HgCl_2$  in  $CH_2Cl_2$  relativ gering (10-17%). Allerdings sind die Reaktionen reproduzierbar.<sup>10</sup>

Lässt man eine  $CH_2Cl_2/Hexan-Lösung$  von  $(NSCl)_3/HgCl_2$  über einen Zeitraum von mehreren Wochen stehen, so wird die Lösung immer dunkler, es entsteht  $S_4N_3^+$  als zweites Hauptprodukt. Allerdings entsteht kein  $S_4N_3^+$ , wenn man eine Lösung von  $(NSCl)_3/HgCl_2$  in  $CH_2Cl_2$  über einen längeren Zeitraum stehen lässt.

Bei der Reaktion von  $S_2^{2+}$  mit  $N_3^-$  in Dichlormethan scheint das  $S_2N_3^+$  nicht zu entstehen. Allerdings steht das Ergebnis der Reaktion von NaN<sub>3</sub> mit S<sub>2</sub>Cl<sub>2</sub> noch aus.

# 4.1.2. Reaktion von $S_2^{2+}$ mit $N_3^{-1}$

Es wurde auch versucht, das Kation  $S_2N_3^+$  direkt aus  $S_2^{2^+}$  und  $N_3^-$  darzustellen (siehe 6.5.12 und 6.5.13). Im Falle der Reaktion von (CH<sub>3</sub>)<sub>3</sub>SiN<sub>3</sub> (6.5.13) mit S<sub>2</sub>Cl<sub>2</sub> entstand das S<sub>4</sub>N<sub>3</sub><sup>+</sup>. Das Ergebnis der Reaktion von NaN<sub>3</sub> mit S<sub>2</sub>Cl<sub>2</sub> stand bis zur Beendigung dieser Arbeit noch nicht fest.

# 4.2. Struktur und Bindung im $S_2N_3^+$

Das  $S_2N_3^+$ -Kation sollte nach *ab initio* (CCSD(T)) und Dichtefunktionalrechnungen (B3LYP) in der Gasphase isoliert planare, symmetrische  $C_{2v}$ -Struktur besitzen (Tabelle 4).  $[S_2N_3]^+_4[Hg_3Cl_{10}]^4$  kristallisiert in der triklinen Raumgruppe  $P\bar{1}$  mit einem unabhängigen  $S_2N_3^+$  Molekül pro Elementarzelle, während  $[S_2N_3]^+_2[Hg_2Cl_6]^{2-}$  in der monoklinen Raumgruppe P2(1)/n mit zwei unabhängigen  $S_2N_3^+$ -Molekülen kristallisiert. In  $[S_2N_3]^+_2[Hg_2Cl_6]^{2-}$  ist die  $C_{2v}$ -Symmetrie für das  $S_2N_3^+$  leicht verzerrt, das gleiche gilt für das erste  $S_2N_3^+$ -Kation in  $[S_2N_3]^+_4[Hg_3Cl_{10}]^{4-}$ , das zweite  $S_2N_3^+$ -Kation ist nahezu unverzerrt (siehe Tabelle 4).

**Tabelle 4**Experimentelle und berechnete Strukturdaten des  $S_2N_3^+$ -Kations (Winkel in °,Abstände in Å)

|                 | $[S_2N_3]^+_2[Hg_2Cl_6]^{2-1}$ | $[S_2N_3]^+ [Hg_3Cl_{10}]^{4-}$ |         | B3LYP <sup>a</sup> |          |
|-----------------|--------------------------------|---------------------------------|---------|--------------------|----------|
|                 |                                | Kation1                         | Kation2 | 6-311+G(3df)       | 6-31G(d) |
| <i>d</i> (N1N2) | 1.329(10)                      | 1.329                           | 1.336   | 1.297              | 1.299    |
| <i>d</i> (N1N3) | 1.348(10)                      | 1.363                           | 1.337   | 1.297              | 1.299    |
| <i>d</i> (N2S1) | 1.574(6)                       | 1.583                           | 1.582   | 1.622              | 1.633    |
| <i>d</i> (N3S2) | 1.583(6)                       | 1.576                           | 1.597   | 1.622              | 1.633    |
| <i>d</i> (S1S2) | 2.015(3)                       | 2.031                           | 2.023   | 2.026              | 2.050    |
| <(N2N1N3)       | 119.85(72)                     | 119.58                          | 120.26  | 118.3              | 118.7    |
| <(N1N2S1)       | 114.87(49)                     | 115.35                          | 114.62  | 117.3              | 117.3    |
| <(N1N3S2)       | 114.30(51)                     | 114.30                          | 114.46  | 117.3              | 117.3    |
| <(N2S1S2)       | 95.70(26)                      | 95.04                           | 95.62   | 93.6               | 93.3     |
| <(N3S2S1)       | 95.27(25)                      | 95.69                           | 94.99   | 93.6               | 93.4     |

<sup>a</sup> CCSD(T)/6-31G(d): d(N1N2) = 1.318, d(N1N2), d(N1N3) = 1.652, d(S1S2) = 2.038 Å; <(N2N1N3) = 118.3, <(N1N2S1) = 117.0, <(N2S1S2) = 93.9° Die N-N-Bindungslängen liegen zwischen 1.329 und 1.363Å, sind somit deutlich kürzer als die Summe der Kovalenzradien (1.4 Å für Einfach- und 1.2 Å für Zweifachbindungen <sup>11</sup> bzw. 1.318-1.364 Å in Tetrazolen),<sup>12</sup> ein Hinweis auf den partiellen Doppelbindungscharakter.

Ebenfalls im Bereich einer Doppel- und Einfachbindung liegt die N-S-Bindung, mit einer Länge im Bereich von 1.574 bis 1.597 Å (1.74 Å für eine N-S-Einfachbindung, 1.54 Å für eine Doppelbindung,<sup>10</sup> 1.572 – 1.593Å in S<sub>4</sub>N<sub>4</sub>Cl<sup>+</sup>).<sup>11,13</sup> Mit einer Bindungslänge von 2.015 bis 2.031 Å entspricht die S-S-Bindung einer Einfachbindung (2.08 für Einfach-, 1.88 Å für Doppelbindungen).<sup>10</sup> Im Vergleich zum NNS- (114 - 115°) bzw. NSS-Winkel (95 - 96°) ist der NNN-Winkel (*ca.* 120°) relativ groß (vgl. NNN-Winkel in Tetrazolen *ca.* 113°).<sup>11</sup>

Eine große Anzahl an planaren, ringförmigen Molekülen und Ionen, die nur die Elemente Schwefel und Stickstoff enthalten, sind in den letzten 30 Jahren synthetisiert und charakterisiert worden.<sup>14,15</sup> Diese planaren Ringsysteme ( $S_2N_2(6\pi)$ ,  $S_3N_2^+(7\pi)$ ,  $S_3N_3^-(10\pi)$ ,  $S_4N_3^+(10\pi)$ ,  $S_4N_4^{2+}(10\pi)$ ,  $S_5N_5^+(14\pi)$ ), zu denen auch das neuartige  $S_2N_3^+$ -Kation ( $6\pi$ ) gehört, besitzen elektronische Strukturen, die denen der aromatischen Kohlenwasserstoffen ähneln.<sup>16</sup>



**Abbildung 7**  $\pi$ -MOs in  $C_5H_5^-$  und  $S_2N_3^+$ .

Abgesehen vom Radikalkation  $S_3N_2^+$ , das sich über eine  $\pi^*-\pi^*$ -Wechselwirkung im Dimeren stabilisiert,<sup>17</sup> besitzen all diese Ringsysteme  $(4n + 2)\pi$ -Elektronen und folgen damit formal der Hückelregel für aromatische Kohlenwasserstoffe. Das  $S_2N_3^+$ -Kation ist die bisher einzig bekannte binäre SN-Spezies mit einer N<sub>3</sub>-Einheit. Auch das Isomer, in dem ein Stickstoffatom zwischen den beiden Schwefelatomen ist, existiert bis dato nicht. Obwohl das isovalenzelektronische  $S_3N_2^+$ -Kation im Festkörper schwingungsspektroskopische nachgewiesen wurde, dissoziiert dieses Ringsystem spontan in Lösung zu SN<sup>+</sup> und SNS<sup>+</sup>.<sup>18</sup>

Die  $\pi$ -MOs des S<sub>2</sub>N<sub>3</sub><sup>+</sup>-Kations sind denen der homoatomaren Ringsysteme C<sub>5</sub>H<sub>5</sub><sup>-</sup> und P<sub>5</sub><sup>-</sup> ähnlich. Da sowohl der Schwefel als auch der Stickstoff elektronegativer sind als der Kohlenstoff bzw. Phosphor, liegen die  $\pi$ -MOs des S<sub>2</sub>N<sub>3</sub><sup>+</sup>-Kations energetisch tiefer als die analogen  $\pi$ -MOs des C<sub>5</sub>H<sub>5</sub><sup>-</sup> und P<sub>5</sub><sup>-</sup>. Durch die Symmetrieerniedrigung im C<sub>2v</sub>-symmetrischen S<sub>2</sub>N<sub>3</sub><sup>+</sup>-Kation wird die Entartung der 1e" und 2e"  $\pi$ -MOs aufgehoben (Abbildung 7). **Abbildung 8** Besetzte  $\pi$ -MOs des S<sub>2</sub>N<sub>3</sub><sup>+</sup>-Kations (B3LYP/6-31G(d)).



Die berechneten  $\pi$ -MOs für das S<sub>2</sub>N<sub>3</sub><sup>+</sup>-Kation (dargestellt sind in Abbildung 8 nur die besetzten MOs) verdeutlichen, dass die  $\pi$ -Elektronendichte vorwiegend zwischen den NNund NS-Atomen lokalisiert ist, womit sich auch der partielle Doppelbindungscharakter der N– N- bzw. S–N-Bindungen und der im Bereich einer Einfachbindung liegende S–S-Abstand erklärt.

Die berechneten Partialladungen (NBO-Analyse) unterstreichen dies; so wurde eine positive Ladung (0.1035*e*) am N1-Atom und an den Schwefelatomen (0.7411*e*) gefunden, während N2 und N3 eine negative Ladung (-0.2928*e*) besitzen. Die relativ große positive Partialladung am Schwefel (starke Coulombsche Abstoßung) trägt ebenfalls zur der langen S–S-Bindung bei.



Abbildung 9 Elektronendichte im  $S_2N_3^+$  Ion

Dem Diagramm ist die Elektronendichteverteilung im  $S_2N_3^+$ -Kation zu entnehmen:

um die N-Atome ist ein dichtes Profil an "Höhenlinien" zu erkennen. Dies deutet auf hohe Elektronendichte an den Stickstoffatomen hin und stimmt mit der gefunden negativen Ladung an N2 und N3 überein.

Die geringe Elektronendichte zwischen den beiden Schwefelatomen deutet auf eine schwache Bindung hin.

# 4.2.1. Schwingungsspektroskopische Untersuchungen von $S_2N_3^+$

Die erhaltenen Produkte  $[S_2N_3]^+_4[Hg_3Cl_{10}]^{4-}$  und  $[S_2N_3]^+_2[Hg_2Cl_6]^{2-}$  wurden mittels IR- und Ramanspektroskopie untersucht. Die erhaltenen experimentellen Werte wurden mit den Ergebnissen der quantenmechanischen Berechnungen verglichen.

| B3LYP/6-    | CCSD(T)/ | B3LYP/6-   | Raman               | Infrarot            | Symmetrie | Zuordnung            |
|-------------|----------|------------|---------------------|---------------------|-----------|----------------------|
| 31G(d)      | 6-31G(d) | 311+G(3df) | [cm <sup>-1</sup> ] | [cm <sup>-1</sup> ] |           |                      |
| 1165        | 1125     | 1157 [9]   | -                   | 1238s, br           | $A_1$     | $v_{s}$ (NNN)        |
| [13](1)     |          |            |                     |                     |           |                      |
| 1071 [0](1) | 1015     | 1063 [1]   | 1180(0.1)-          | -                   | $B_2$     | $v_a$ (NNN)          |
| 864 [3](3)  | 857      | 878 [3]    | 856(10)             | 846                 | $A_1$     | $\delta_{ip}$ (NNN)  |
| 736 [39](0) | 741      | 746 [30]   | -                   | 801vs               | $B_2$     | $v_a$ (SN)           |
| 718 [7](30) | 709      | 749 [4]    | 815, 812(2)         | 812s                | $A_1$     | $\nu_{s}$ (SN)       |
| 629 [2](0)  | 610      | 637 [2]    | -                   | -                   | $B_1$     | $\delta_{op}$ (NNN)  |
| 536 [0](11) | 524      | 538 [2]    | 514(10)             | 570m                | $B_2$     | $\delta_{ip}$ (ring) |
| 414 [0](0)  | 404      | 421 [0]    | -                   | -                   | $A_2$     | $\delta_{op}$ (ring) |
| 406 [4](11) | 441      | 428 [3]    | 438(1)              | -                   | $A_1$     | $v_{s}(SS)$          |

 Tabelle 5 SSNNN Ring Schwingungsdaten

Da bei der Rechnung nur ein isoliertes Molekül in der Gasphase betrachtet wird, in Wirklichkeit die Messung allerdings an einem Kristall erfolgt, sprich einem Festkörper, gemacht wurde, unterscheiden sich Rechnung und Messung teilweise erheblich. Im Festkörper können bei starken Dipol-Dipol-Wechselwirkungen die Normalschwingungen eines Moleküls stark verschoben sein.

Dennoch stellen quantenmechanische Rechungen ein wertvolles Werkzeug dar, wenn es darum geht, die einzelnen Schwingungsfrequenzen zuzuordnen.

Die einzelnen Normalschwingungen werden im folgenden kurz erläutert; Abbildung 10 soll die einzelnen Schwingungen verdeutlichen. Dabei stellen Pfeile die Richtung der Schwingung dar, + oder – beschreiben eine Bewegung aus der Molekülebene.

In Abbildung 10a ist v<sub>s</sub> (NNN) dargestellt, N2 und N3 schwingen entlang der N2-N1- bzw. N3-N1-Bindung, während N1 in Ruhe bleibt. Die antisymmetrische Streckschwingung v<sub>a</sub> (NNN), d.h. die Schwingung von N2 und N3 schwingen entlang der N2-N1- bzw. N3-N1-Bindung in gleicher Richtung, ist in Abbildung 10b zu erkennen. Abbildung 10c verdeutlicht  $\delta_{ip}$  (NNN), d.h. die Schwingung der N-Atome in der Ringebene, während die NNN-Schwingung aus der Ringebene heraus in f zu sehen ist. Abbildung 10d und Abbildung 10e stellen die antisymmetrische bzw. symmetrische S-N-Streckschwingung dar. Die Ringdeformationsschwingungen innerhalb und außerhalb der Molekülebene sind Abbildung 10g und h zu entnehmen. Die S-S-Schwingung ist in Abbildung 10i dargestellt.



**Abbildung 10** Normalschwingungen des S<sub>2</sub>N<sub>3</sub><sup>+</sup> Kations

# 4.2.2. Struktur und Bindung im Hg<sub>3</sub>Cl<sub>10</sub><sup>4-</sup>

Quecksilber(II)-chlorid bildet mit Chlorid-Anionen Halogenomercuratanionen. Die Strukturvielfalt der bekannten anionischen Spezies ist überraschend groß.<sup>19</sup> Die Koordinationszahlen des Quecksilbers reichen in Hg<sub>x</sub>Cl<sub>y</sub>–Anionen von drei bis sechs, die Chloratome können Hg-Atome verbrücken; darauf begründet sich die strukturelle Vielfalt. Dies bedingt, dass außer mononuklearen (HgCl<sub>4</sub><sup>-</sup>) auch di- (Hg<sub>2</sub>Cl<sub>6</sub><sup>2-</sup>, Hg<sub>2</sub>Cl<sub>7</sub><sup>3-</sup>), tri- (Hg<sub>3</sub>Cl<sub>9</sub><sup>3-</sup>, Hg<sub>3</sub>Cl<sub>10</sub><sup>4-</sup>, Hg<sub>3</sub>Cl<sub>12</sub><sup>6-</sup>), tetra- (Hg<sub>4</sub>Cl<sub>14</sub><sup>6-</sup>) oligo- oder polynukleare Halogenomercurate existieren. Die Halogenomercurate zeichnen sich durch eine große Variabilität der Hg–Cl-Bindungslängen und der Cl–Hg–Cl-Bindungswinkel in den komplexen Anionen aus.<sup>20</sup>



Abbildung 11 Molekülstruktur des Hg<sub>3</sub>Cl<sub>10</sub><sup>4-</sup>

Es kann davon ausgegangen werden, dass in dem Reaktionsgemisch NSCl/HgCl<sub>2</sub> unterschiedliche Halogenmecuratanionen nebeneinander vorliegen und miteinander im Gleichgewicht stehen. Welche der möglichen Anionen mit  $S_2N_3^+$  zu einem Salz auskristallisieren, hängt in hohem Maße von der Polarität des Lösungsmittels und von den Chlorid- und HgCl<sub>2</sub>-Konzentrationen ab. Offenbar wird dasjenige Anion, das in dem am wenigsten löslichen Salz eingebaut ist, via Gleichgewichtsreaktionen laufend nachgebildet; d. h. die relative Gitterenergie des entstehenden Salzes entscheidet über Typ und Struktur des Anions (Hg<sub>x</sub>Cl<sub>y</sub><sup>n-</sup>).

 Tabelle 6 Experimentelle Strukturdaten des

| $Hg_2Cl_6^{2-}$ | -Anions | (Winkel in     | °. Abstände | in Å)            | , |
|-----------------|---------|----------------|-------------|------------------|---|
| 1152010         | 7 mons  | ( W IIIKCI III | , nostanue  | III / <b>x</b> ) |   |

| Hg1Hg1A | 3.948(2) | Hg1Cl3Hg1A | 92.11(4)  |
|---------|----------|------------|-----------|
| Hg1Cl1  | 2.366(2) | Cl1Hg1Cl2  | 144.39(5) |
| Hg1Cl2  | 2.369(2) | Cl3Hg1Cl3A | 87.89(4)  |
| Hg1Cl3  | 2.629(3) | Cl1Hg1Cl3  | 111.52(5) |
| Hg1Cl3A | 2.850(1) | Cl1Hg1Cl3A | 97.77(5)  |

Im polaren Lösemittel  $CH_2Cl_2$  kristallisiert das  $Hg_2Cl_6^{2-}$ -Anion, das bereits in vielen Verbindungen beobachtet wurde,<sup>18,19</sup> während beim Überschichten von  $CH_2Cl_2$  mit Hexan das komplexere neue  $Hg_3Cl_{10}^{4-}$ -Anion kristallisiert. Die Polaritätserniedrigung des Lösemittels bewirkt, dass neutrales  $HgCl_2$  zwischen zwei  $HgCl_4^{2-}$ -Anionen koordiniert wird, was auch als *closed shell* Wechselwirkung aufgefasst werden kann.

Das Hg<sub>3</sub>Cl<sub>10</sub><sup>4-</sup>-Anion besteht aus zwei stark verzerrt-tetraedrischen HgCl<sub>4</sub><sup>-</sup>-Einheiten, die über eine Kante unsymmetrisch (d(Cl3-Hg2) = 2.958 Å und d(Cl4-Hg2) = 3.079 Å) mit der HgCl<sub>2</sub>-Einheit verknüpft sind, so dass das zentrale Quecksilberzentrum als stark verzerrt-oktaedrisch umgeben betrachtet werden kann (Abbildung 11, Tabelle 7). Das Hg<sub>3</sub>Cl<sub>10</sub><sup>4-</sup>-Anion besitzt Inversionssymmetrie (Hg2 liegt im Inversionszentrum.). Auffallend ist die große Variabilität der Bindungslängen (2.335 - 3.079 Å; *cf.* 2.25 – 2.34 Å HgCl<sub>2</sub>(g) oder 2.25 Å HgCl<sub>2</sub>(s)) und – winkel (<Cl-Hg–Cl *ca.* 80 - 180°) im Hg<sub>3</sub>Cl<sub>10</sub><sup>4-</sup>-Anion. Die beiden im Zentralring des Anions vorkommenden Bindungslängen unterscheiden sich um 0.126 Å (d(Cl4-Hg2) – d(Cl3-Hg2)); ein deutlich größerer Wert (0.221 Å) wird im [S<sub>2</sub>N<sub>3</sub>]<sup>+</sup><sub>2</sub>[Hg<sub>2</sub>Cl<sub>6</sub>]<sup>2-</sup> gefunden (*cf.* 0.27 Å in [Cu(en)<sub>2</sub>]<sup>2+</sup>[Hg<sub>2</sub>Cl<sub>6</sub>]<sup>2-</sup>). Die verbrückenden Hg1–Cl-Bindungen (2.635 und 2.433 Å) und die terminalen Hg1–Cl-Bindungen (2.578 und 2.406 Å) sind verglichen mit der axialen Hg2–Cl5-Bindung (2.335 Å) wesentlich länger.

| <b>Tabelle 7</b> Experimentelle Strukturdaten des $Hg_3Cl_{10}^{4-}$ -Anions (Winkel in °, Abstände in A | Å). |
|----------------------------------------------------------------------------------------------------------|-----|
|----------------------------------------------------------------------------------------------------------|-----|

| Hg1Hg2    | Hg1Cl1    | Hg1Cl2    | Hg1Cl3     |
|-----------|-----------|-----------|------------|
| 3.865(0)  | 2.578(1)  | 2.406(1)  | 2.635(1)   |
| Cl1Hg1Cl2 | Cl1Hg1Cl3 | Cl1Hg1Cl4 | Cl2Hg1Cl3  |
| 113.86(4) | 93.28(5)  | 106.71(5) | 105.06(4)  |
|           |           |           |            |
| Hg1Cl4    | Hg2Cl3    | Hg2Cl4    | Hg2Cl5     |
| 2.433(2)  | 2.958(1)  | 3.079(1)  | 2.335(1)   |
| Cl2Hg1Cl4 | Cl3Hg1Cl4 | Cl3Hg2Cl4 | Cl3Hg2Cl4A |
| 130.43(5) | 99.67(5)  | 79.84(4)  | 100.16(4)  |
|           |           |           |            |

# 4.3. $[S_2N_3]^+[ZnCl_4]^{2-}$

Setzt man statt HgCl<sub>2</sub> ZnCl<sub>2</sub> ein, und lässt es mit (NSCl)<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> in einem Verhältnis von 3:4 reagieren (siehe 6.5.5), so kristallisieren farblose Nadeln. Das Ramanspektrum zeigt zwei Signale bei 869 und 514cm<sup>-1</sup>, die denen des S<sub>2</sub>N<sub>3</sub><sup>+</sup> Kations zugeordnet werden können. Diese beiden Signale entsprechen  $\delta_{ip}$  (NNN) (869cm<sup>-1</sup>) und  $\delta_{ip}$  (ring) (514cm<sup>-1</sup>).

Es lässt sich also schlussfolgern, dass die Substitution von  $HgCl_2$  durch  $ZnCl_2$  auch zur Bildung des  $S_2N_3^+$  führt. Die Kristalle sind zur Einkristallstrukturanalyse gegeben worden. Das Ergebnis dieser Messung steht bis jetzt noch nicht fest.

# 4.3.1. Molekülstruktur des S<sub>4</sub>N<sub>3</sub><sup>2+</sup> [FeCl<sub>4</sub>]<sub>2</sub><sup>-</sup>

Bei der Umsetzung von FeCl<sub>3</sub> mit (NSCl)<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> (siehe 6.5.10) kristallisieren gelbe Plättchen aus. Dabei handelt es sich nicht um das gewünschte Produkt Fe(NSCl<sub>2</sub>)<sub>3</sub>, sondern um S<sub>4</sub>N<sub>3</sub><sup>2+</sup> [FeCl<sub>4</sub>]<sub>2</sub>, das bereits 1984 von Dehnicke und Mitarbeitern beschrieben wurde.<sup>31</sup>

 $FeCl_3 + (NSCl)_3 \rightarrow (FeNSCl_2)_3$ 



**Abbildung 12** Molekülstruktur des S<sub>4</sub>N<sub>3</sub><sup>2+</sup> [FeCl<sub>4</sub>]<sub>2</sub><sup>-</sup>

Das  $S_4N_3^{2+}$  [FeCl<sub>4</sub>]<sub>2</sub> kristallisiert in Form gelber Plättchen monoklin in der Raumgruppe *P*21/*m* mit vier Formeleinheiten pro Elementarzelle aus. Die Gitterkonstanten betragen:

a = 6.26120(10) Å b = 14.4622(3) Å c = 12.2074(3) Å  

$$\alpha = 90.00 \circ \beta = 99.5685(9) \circ \gamma = 90.00 \circ$$

Mit Bindungsstärken von 1.54 Å (S1-N3) bis 1.58 Å (S4-N3) entsprechen die S-N-Bindungen im  $S_4N_3^+$  einer S-N-Doppelbindung.<sup>10,11,13</sup> Bei der Bindung S1-S4 handelt es sich um eine Doppelbindung (2.08 Å).<sup>10</sup>

Die Bindungsabstände im FeCl<sub>4</sub><sup>-</sup> liegen 2.18 Å für Fe(1)-Cl(31) und 2.22 Å für Fe(1)-Cl(11). Die Winkel sind nahezu ideal tetraedrisch (*ca.* 107-110°) und entsprechen denen in der Literatur veröffentlichten.<sup>21</sup> Weitere Daten sind unter 7.3 zu finden.

# 4.4. Umsetzung von $[Ph_4P]^+[NSCl_2]^-$ mit MCl<sub>2</sub> [M = Cu, Hg]

Mit diesen Versuchen sollte das Verhalten von  $[NSCl_2]^-$  als Cl<sup>-</sup>-Donor gegenüber Metallchloriden untersucht werden. Dazu wurden die Metallsalze mit einer  $[Ph_4P]^+[NSCl_2]^-$  CH<sub>2</sub>Cl<sub>2</sub>-Lösung gerührt.

 $2 [Ph_4P]^+ [NSCl_2]^- + HgCl_2 \rightarrow [Ph_4P]^+ _2 [HgCl_4]^{2-} + [NS]_x + S_4N_4 + \dots$ 

 $2 [Ph_4P]^+[NSCl_2]^- + 2 CuCl_2 \rightarrow [Ph_4P]^+_2[Cu_2Cl_6]^{2-} + [NS]_x + S_4N_4 + \dots$ 

Beide Salze lösten sich innerhalb von Minuten, es wurden Metallat-Anionen (s. nächster Absatz und 4.4.1 bzw. 4.4.2) erhalten, als Gegenion fungierte  $[Ph_4P]^+$ . Daneben erhielt man eine Vielzahl von S-N-Verbindungen, wie z.B. polymeres  $[NS]_x$ .

Ein denkbarer Reaktionsablauf wäre folgender: Zwei in Lösung vorliegende  $[NSCl_2]^-$ Anionen donieren jeweils ein Cl<sup>-</sup> an ein neutrales MCl<sub>2</sub> Molekül. Das entstehende MCl<sub>4</sub><sup>2-</sup> kristallisiert entweder sofort aus (M=Hg; Gegenion Ph<sub>4</sub>P<sup>+</sup>) oder bildet mit einem weiteren neutralen MCl<sub>2</sub> Molekül ein Cl<sup>-</sup> verbrücktes zweikerniges Anion vom Typ M<sub>2</sub>Cl<sub>6</sub><sup>2-</sup> (M=Cu). Das entstehende NS<sup>+</sup> reagiert mit NSCl über mehrere Stufen zum [NS]<sub>x</sub>.<sup>8</sup>

Offensichtlich kann das  $[NSCl_2]^-$  nicht über kovalente Metall-Stickstoff-Wechselwirkungen stabilisiert werden, wie es bei dem  $[NSF_2]^-$  möglich ist.

# 4.4.1. Molekülstruktur von [Ph<sub>4</sub>P]<sup>+</sup><sub>2</sub>[HgCl<sub>4</sub>]<sup>2-</sup>



**Abbildung 13** Molekülstruktur des  $[Ph_4P]^+_2[HgCl_4]^{2-}$ 

 $[Ph_4P]^+_2[HgCl_4]^{2-}$  kristallisiert monoklin in der Raumgruppe P21/m mit vier Formeleinheiten pro Einheitszelle aus. Die Gitterkonstanten lauten:

a = 13.28230(10) Å; b = 19.32390(10) Å; c = 20.4663(2) Å  

$$\alpha = 90.00^{\circ}, \beta = 92.5638(2)^{\circ} \gamma = 90.00^{\circ}$$

Der Hg-Cl-Abstand in  $[Ph_4P]^+_2[HgCl_4]^{2-}$  liegt zwischen 2.47 (Hg1-Cl4) und 2.50 Å (Hg1-Cl1) und liegen damit im üblichen Rahmen für Hg-Cl-Bindungslängen.<sup>20</sup> Die Winkel liegen zwischen 106.4° (Cl2-Hg-Cl1) und 108.8° (Cl2-Hg-Cl3), das Anion besitzt damit eine nahezu ideal tetraedrische Struktur. Atomkoordinaten und weitere Angaben finden sich im Anhang unter 7.5.

# **4.4.2.** Molekülstruktur von [Ph<sub>4</sub>P]<sup>+</sup><sub>2</sub>[Cu<sub>2</sub>Cl<sub>6</sub>]<sup>2-</sup>



**Abbildung 14** Molekülstruktur des [Ph<sub>4</sub>P]<sup>+</sup><sub>2</sub>[Cu<sub>2</sub>Cl<sub>6</sub>]<sup>2-</sup>

 $[Ph_4P]^+_2[Cu_2Cl_6]^{2-}$  kristallisiert in der Raumgruppe P2(1)/n monoklin in Form rot brauner Prismen mit acht Formeleinheiten pro Elementarzelle aus. Die Gitterkonstanten betragen:

a = 9.1639(9) Å b = 19.275(2) Å c = 13.411(1) Å  

$$\alpha = 90^{\circ} \beta = 108.018(2)^{\circ} \gamma = 90^{\circ}$$

Der Cu-Cl-Abstand im  $[Ph_4P]^+_2[Cu_2Cl_6]^{2-}$  liegt zwischen 2.18 (Cu1-Cl3) und 2.33 Å (Cu1-Cl1). Die Bindung Cu1-Cl3 ist vergleichsweise eher kurz (2.30±0.03 Å im CuCl<sub>2</sub>).<sup>22</sup> Die erhaltene Struktur ist dennoch mit der bereits veröffentlichten identisch.<sup>25</sup> Weitere Daten finden sich im Anhang unter 7.4.

#### 4.5. Umsetzung von $[Ph_4P]^+[NSCl_2]^-$ mit AgX $[X = CN^-, OCN^-, SCN^-]$

Es sollte versucht werden, die Chloratome des  $[NSCl_2]^{-}$  durch Pseudohalogenide X  $[X=CN^{-}, OCN^{-}, SCN^{-}]$  zu ersetzen. Dabei sollte untersucht werden, ob auch ein partieller Austausch, d.h. die Substitution eines Cl durch ein X, möglich ist.

Die Reaktionen von  $[Ph_4P]^+$  mit AgX  $[X = CN^-, OCN^-, SCN^-]$  in  $CH_2Cl_2$  (siehe 6.5.16 bis 6.5.23) brachten keine klar zu charakterisierenden Produkte. Zwar gibt es in den <sup>14</sup>N-NMR Spektren mehrere Signale, die jedoch nicht zugeordnet werden können. Die Signalintensitäten sind abhängig von Zeit und Temperatur, sie nehmen beständig ab.

Die bei der Reaktion entstehenden Produkte [NSCl<sub>2</sub>]<sup>-</sup> und [NSClX]<sup>-</sup> sind nicht stabil und polymerisieren:

$$[NSCl_2]^{-} + AgX \rightarrow [NSClX]^{-} + AgCl$$
$$[NSClX]^{-} \rightarrow NSX + Cl^{-} \rightarrow Polymer$$
$$[NSCl_2]^{-} + 2 AgX \rightarrow [NSX_2]^{-} + 2 AgCl$$
$$[NSX_2]^{-} \rightarrow NSX + X^{-} \rightarrow Polymer$$

Mittels Ramanspektroskopie konnten nur die bei der Reaktion anfallenden Nebenprodukte  $[Ph_4P]^+[X]^- [X = CN^-, OCN^-, SCN^-]$  eindeutig nachgewiesen werden. Die Neigung zur Polymersisation der entstehenden [NSClX]^- [X = CN^-, OCN^-, SCN^-] bzw. [NSCl<sub>2</sub>]<sup>-</sup> ist auch bei tiefer Temperatur ausgeprägt.

Verantwortlich für die Polymerisationsreaktionen sind zum einen die eingesetzten Pseudohalogenide, die wegen ihrer Dreifachbindungen zur Polymerisation neigen, zum anderen das entstehende NS<sup>-</sup> Radikal, das zu unterschiedlichen S-N-Verbindungen bzw. Polymeren weiterreagiert.

Die Spezies  $[NSCl_2]^-$  und  $[NSClX]^ [X = CN^-, OCN^-, SCN^-]$  konnten auch nicht mit Abfangreagenzien ((PdCl\_2PEt\_3)\_2, CuNO\_3\*4MeCN) stabilisiert werden.

Die Ergebnisse der <sup>14</sup>N-NMR Messungen sowie die Entstehung von Polymeren und AgCl geben Hinweise, dass bei den durchgeführten Reaktionen die gewünschten Substitutionen durchgeführt wurden. Dennoch fehlt es an einer Möglichkeit, diese Produkte abzufangen bzw. eindeutig nachzuweisen, bevor sie zerfallen.

# 4.5.1. Molekülstruktur von [Ph<sub>4</sub>P]<sup>+</sup><sub>2</sub>[Pd(SCN)<sub>4</sub>]<sup>2-</sup>

Bei der Umsetzung von  $[NSCl_2]^-$  mit AgSCN in  $CH_2Cl_2$  kristallisierten nach Zugabe von  $(PdCl_2PEt_3)_2$  nach einigen Tagen rote Nadeln (siehe 6.5.18). Das  $(PdCl_2PEt_3)_2$  sollte als Abfangreagenz die entstehende  $[NS(SCN)_2]^-$  aus der Lösung ausfällen, bevor das instabile Anion polymerisiert:

$$[NSCl_2]^{-}(s) + 2 \text{ AgSCN } (s) \rightarrow [NS(SCN)_2]^{-}(s) + 2 \text{ AgCl } (s)$$

$$[NS(SCN)_2]^{-}(s) + \frac{1}{2} (PdCl_2PEt_3)_2(s) \rightarrow [PdCl_2PEt_3]^{+}[NS(SCN)_2]^{-}(s)$$

Diese Reaktion tritt gegenüber dem Austausch der Cl-Atome des Pd-Komplex durch SCN<sup>-</sup> des  $[NS(SCN)_2]^-$  in den Hintergrund (PEt<sub>3</sub> wird durch SCN<sup>-</sup> ersetzt), man erhält nur  $[Ph_4P]^+_2[Pd(SCN)_4]^{2-}$ .

$$[NSCl_2]^{-} + 2 \text{ AgSCN} \rightarrow [NS(SCN)_2]^{-} + 2 \text{ AgCl}$$

 $2[NS(SCN)_2]^{-} + (PdCl_2PEt_3)_2 \rightarrow [Pd(SCN)_4]^{2-} + 2[NS]^{+}$ 

 $[Ph_4P]^+_2[Pd(SCN)_4]^{2-}$  kristallisiert monoklin in der Raumgruppe P21/m mit zwei Formeleinheiten pro Elementarzelle. Offensichtlich ist SCN<sup>-</sup> so schwach an das NS<sup>+</sup> gebunden, dass es mit den Cl-Atomen des eingesetzten Komplexes austauschen kann.

Das Pd wird quadratisch-planar von 4 Schwefelatomen koordiniert, die S-Pd-Bindungslängen sind nahezu identisch: 2.3394 und 2.3373 Å für S1(A)-Pd und S2(B)-Pd. Die Bindungen sind damit im Rahmen des üblichen (*ca.* 2.30 Å für Pd-S-Bindungen).<sup>23</sup>

Die SCN<sup>-</sup> Liganden sind leicht verzerrt, anstatt 180°, wie für lineare Moleküle üblich, beschreiben S1C1N1 bzw. S2C2N2 einen Winkel 176.2° bzw. 178°. Die genauen Daten sind 7.6 zu entnehmen. Das Anion besitzt eine leicht verzerrte  $D_{4h}$ -Symmetrie.



Abbildung 15 Molekülstruktur [Ph<sub>4</sub>P]<sup>+</sup><sub>2</sub>[Pd(SCN)<sub>4</sub>]<sup>2-</sup>

#### 4.6. Berechnungen zu Thiazylverbindungen

Neben dem Experimentellen Teil, dem Versuch die Chloratome in  $NSCl_2^-$  gegen die Pseudohalogenide  $CN^-$ ,  $SCN^-$  sowie  $OCN^-$  auszutauschen wurden theoretische Berechnungen zu den Molekülen bzw. Ionen  $NS^+$ ,  $CN^-$ ,  $SCN^-$ , NSCl, NSCN, NSNC, NSSCN, NSNCS,  $[NS(CN)_2]^-$  sowie  $[NS(NC)_2]^-$  durchgeführt.<sup>24</sup>

Die verwendete Software bestand im Falle der Geometrieoptimierungen sowie Frequenzberechnungen aus dem Softwarepaket Gaussian98 Rev.A6,<sup>25</sup> die Visualisierung der Moleküle erfolgte mit den Programmen Gaussview bzw. Molden.<sup>23,26</sup>

Geometrieoptimierungen wurden mit der Dichtefunktionaltheorie Becke-3LYP und dem Basissatz 6-31G(d) durchgeführt.<sup>27</sup> Stationäre Punkte wurden durch eine Frequenzanalyse verifiziert.

Zusätzlich wurden die Struktur der Moleküle NSCN, NSNC und  $[NS(CN)_2]^-$  mit der Methode B3LYP und dem erweiterten Basissatz 6-311+G(3df) berechnet, um Vergleiche zwischen den verwendeten Basissätzen zu ermöglichen.

## **4.6.1.** Das Thiazylkation NS<sup>+</sup>

Tabelle 8 Berechnete Bindungslängen und Schwingungswellenzahlen :

|        | N-S (Å) | $\widetilde{\mathcal{U}}_{(\mathrm{NS})}[\mathrm{cm}]$ |
|--------|---------|--------------------------------------------------------|
| $NS^+$ | 1.440   | 1489 (25) [19]                                         |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 2.07 D Nettoatomladungen : N : 0.030834e S : 0.969166e

$$\label{eq:nullpunktsschwingungsenergie} \begin{split} & E^\circ{}_{vib} = 2.12893 \; kcal/mol \\ & Totale \; Energie \; E_{tot} = - \; 452.527661307 \; a.u. \end{split}$$

Der kurze S-N-Abstand sowie die hohe Schwingungswellenzahl im linearen NS<sup>+</sup> entsprechen einer starken SN-Dreifachbindung.

## 4.6.2. Thiazylchlorid NSCl

|      | N-S   | S-Cl  | NSCI   |
|------|-------|-------|--------|
| NSC1 | 1.467 | 2.238 | 118.8° |

Tabelle 9 Berechnete Bindungslängen (Å) und -winkel :

# **Tabelle 10** Berechnete Schwingungswellenzahlen [cm<sup>-1</sup>] :

| $\widetilde{\mathcal{U}}_{(\mathrm{NSCl,  bending})}$ | ${\widetilde {\cal U}}_{ m (SCl)}$ | ${\widetilde {\cal U}}_{ m (NS)}$ |
|-------------------------------------------------------|------------------------------------|-----------------------------------|
| 258 (15) [18]                                         | 389 (109) [9]                      | 1346 (62) [29]                    |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 2.3775 D Nettoatomladungen : N : -0.283011e S : 0.581906e Cl : -0.298895e

*Nullpunktsschwingungsenergie*  $E^{\circ}_{vib} = 2.84886$  kcal/mol

Totale Energie  $E_{tot}$ = - 913.068300594 a.u.

Der verlängerte S-N Bindungsabstand sowie die zugehörige niedrigere Schwingungswellenzahl im Vergleich zu SN<sup>+</sup> weisen auf eine leicht geschwächte Bindung hin. Die niedrige S-Cl- Schwingungswellenzahl entspricht einer schwachen Bindung, der Winkel NSCl ist relativ groß, was aus der Abstoßung SN- $\pi$  und  $\sigma$ -SCl Bindung resultiert.

## 4.6.3. Das Cyanidion CN<sup>-</sup>

### Tabelle 11 Berechnete Bindungslängen und Schwingungswellenzahlen :

|    | C-N (Å) | $\widetilde{v}_{(CN)}[cm]$ |
|----|---------|----------------------------|
| CN | 1.184   | 2139 (8) [22]              |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 0.6193 D Nettoatomladungen : C : -0.425474e N : -0.574526e

Nullpunktsschwingungsenergie  $E^{\circ}_{vib} = 3.05842$  kcal/mol Totale Energie  $E_{tot} = -92.8241780186$  a.u.

Die kurze Bindungslänge sowie die zugehörige hohe Schwingungswellenzahl entsprechen einer starken Dreifachbindung mit hohem  $\pi$ -Bindungscharakter.

#### 4.6.4. Thiazylnitril NSCN

## Tabelle 12 Berechnete Bindungslängen (Å) und -winkel :

|      | N-S   | S-C   | C-N   | NSC    | SCN    |
|------|-------|-------|-------|--------|--------|
| NSCN | 1.493 | 1.870 | 1.166 | 113.1° | 177.3° |

### **Tabelle 13** Berechnete Schwingungswellenzahlen [cm<sup>-1</sup>]:

| $\widetilde{\upsilon}_{(	ext{SCN, in plane})}$ | $\widetilde{\mathcal{U}}_{(	ext{SCN, out of pl.})}$ | ${\widetilde {\cal U}}_{ m (SC)}$ | $\widetilde{\upsilon}_{(	ext{NSC, in plane})}$ | $\widetilde{ u}_{( m NS)}$ | $\widetilde{\mathcal{U}}_{(\mathrm{CN})}$ |
|------------------------------------------------|-----------------------------------------------------|-----------------------------------|------------------------------------------------|----------------------------|-------------------------------------------|
| 135 (9) [6]                                    | 204 (2) [2]                                         | 353 (49) [11]                     | 537 (84) [1]                                   | 1209 (14) [26]             | 2269 (64) [66]                            |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 2.5989 D

Nettoatomladungen :

N:-0.337145e

S: 0.645918e

C: 0.036427e

N:-0.345200e

*Nullpunktsschwingungsenergie*  $E^{\circ}_{vib} = 6.73128$  kcal/mol

*Totale Energie*  $E_{tot}$ = - 545.658007725 a.u.

Die Reaktionsenergie  $\Delta_R E$  für die Reaktion NS<sup>+</sup> + CN<sup>-</sup>  $\rightarrow$  NSCN beläuft sich auf:

 $\Delta_{\rm R} E = -545.658007725 - (-452.527661307 + (-92.8241780186)) \text{ a.u.} = -0.306168399 \text{ a.u.}$ 

= - 192.0 kcal/mol

Die im Vergleich zu NS<sup>+</sup> längere S-N-Bindung und die zugehörige Erniedrigung der Wellenzahl entspricht einer Erniedrigung des S-N-Bindungsgrades. Die im Vergleich zu CN<sup>-</sup> kürzere C-N-Bindung und die Erhöhung der Wellenzahl deutet auf eine Stärkung der Bindung hin.

Vergleicht man S-C-Bindung (1.870 Å) mit der Summe der Kovalenzradien von S und C (1.810 Å), so stellt man fest, dass die S-C-Bindung verlängert ist.<sup>28</sup> Dies erklärt die instabile Bindung und die Schwierigkeit im Experiment, das Molekül zu isolieren.

Der Winkel NSC ist im Vergleich zu NSCl kleiner, die  $\pi$ - $\sigma$ -Repulsion ist aufgrund des niedrigeren  $\pi$ -Anteils der NS-Bindung geringer.

|                        | N-S   | S-C          | C-N   | NSC       | SCN              |  |  |
|------------------------|-------|--------------|-------|-----------|------------------|--|--|
| b3lyp/6-31G(d)         | 1.493 | 1.870        | 1.166 | 113.1°    | 177.3°           |  |  |
| B3lyp/6-311+<br>G(3df) | 1.471 | 1.857        | 1.155 | 112.7     | 177.4            |  |  |
|                        |       |              |       |           |                  |  |  |
|                        |       | b3lyp/6-310  | G(d)  | b31       | yp/6-311+ G(3df) |  |  |
| Dipolmoment :          |       | 2.5989 D     |       |           | 2.6919 D         |  |  |
| Nettoatomladun         | gen : |              |       |           |                  |  |  |
|                        |       | N : -0.33714 | 5e    | -(        | ).308909e        |  |  |
|                        |       | S:0.645918   | e     | (         | ).451003e        |  |  |
| C : 0.036427e          |       |              | (     | 0.609242e |                  |  |  |
|                        |       | N : -0.34520 | 0e    | -         | 0.751336e        |  |  |

Tabelle 14 enthält geometrieoptimierte Bindungslängen und Winkel für NSCN **Tabelle 14** Berechnete Bindungslängen (Å) und –winkel :

*Totale Energie*  $E_{tot}$ = - 545.755045602 a.u.

Bei allen Bindungen fallen die Werte des erweiterten Basissatzes kürzer aus, die Winkel sind ebenfalls etwas kleiner.

Das Dipolmoment ist etwas gestiegen, die markantesten Veränderungen sind bei den Atomladungen festzustellen. Das Schwefelatom ist deutlich weniger elektropositiv, das Kohlenstoffatom ist wesentlich elektropositiver, wohingegen das Stickstoffatom des Nitrils deutlich elektronegativer ist.

Diese Ergebnisse zeigen, dass die S-C-Bindung deutlich weniger stabil ist, als dies aus dem einfacheren Basissatz gefolgert werden kann.

#### 4.6.5. Thiazylisonitril NSNC

|      | N-S   | S-N   | N-C   | NSN    | SNC    |
|------|-------|-------|-------|--------|--------|
| NSNC | 1.471 | 1.827 | 1.191 | 115.5° | 171.4° |

## Tabelle 15 Berechnete Bindungslängen (Å) und –winkel :

**Tabelle 16** Berechnete Schwingungswellenzahlen [cm<sup>-1</sup>]:

| $\widetilde{\mathcal{U}}_{(\mathrm{SNC,  out  of  pl.})}$ | ${\widetilde {\cal U}}_{ m (SNC,\ in\ plane)}$ | $\widetilde{\mathcal{U}}_{(\mathrm{SN})}$ | $\widetilde{\upsilon}_{(\mathrm{NSN,\ in\ plane})}$ | $\widetilde{ u}_{( m NS)}$ | $\widetilde{\upsilon}_{(CN)}$ |
|-----------------------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------|-------------------------------|
| 60 (0) [3]                                                | 69 (1) [6]                                     | 334 (46) [21]                             | 493 (174) [7]                                       | 1308 (28) [34]             | 2086 (464) [62]               |
| ID' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                 |                                                |                                           |                                                     |                            |                               |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 2.6004 D

Nettoatomladungen :

N : -0.318708e

S : 0.712048e

N : -0.432508e

C: 0.039168e

Nullpunktsschwingungsenergie  $E^{\circ}_{vib} = 6.21981$  kcal/mol Totale Energie  $E_{tot} = -545.642363423$  a.u.

Die Reaktionsenergie  $\Delta_R E$  für die Reaktion NS<sup>+</sup> + NC<sup>-</sup> → NSNC beläuft sich auf:  $\Delta_R E = -545.642363423 - (-452.527661307 + (-92.8241780186))$  a.u. = -0.290524097 a.u. = -182.2 kcal/mol

Im Vergleich zu NSCN ist die N-S-Bindung verkürzt, die Schwingungswellenzahl liegt etwas höher. Vergleicht man S-N-Bindung (1.827 Å) mit der Summe der Kovalenzradien von S und N (1.740 Å), so stellt man fest, dass die S-N-Bindung verlängert ist.<sup>28</sup> Dies erklärt die instabile Bindung und die Schwierigkeit im Experiment, das Molekül zu isolieren.

Die S-N-Bindung ist relativ lang und besitzt eine kleine Schwingungswellenzahl, der Winkel NSN ist etwas größer als im Thiazylnitril, die Reaktionsenergie ist stärker exotherm.

Tabelle 17 enthält die Daten der Geometrie-optimierten Struktur des NSNC.

|                        | N-S    | S-N        | N-C          | NSN    | SNC    |  |
|------------------------|--------|------------|--------------|--------|--------|--|
| b3lyp/6-31G(d)         | 1.471  | 1.827      | 1.191        | 115.5° | 171.4° |  |
| B3lyp/6-311+<br>G(3df) | 1.450  | 1.808      | 1.179        | 115.4° | 163.4° |  |
|                        |        |            |              |        |        |  |
|                        |        | b3lyp/6    | -311+ G(3df) |        |        |  |
| Dipolmoment : 2.6004 D |        |            |              | 2.5333 |        |  |
| Nettoatomladu          | ngen : |            |              |        |        |  |
|                        |        | N : -0.318 | 708e         | -0.32  | 1864e  |  |
|                        |        | S: 0.7120  | 48e          | 0.528  | 8536e  |  |
|                        |        | N : -0.432 | 508e         | -0.302 | 2201e  |  |
|                        |        | 68e        | 0.095529e    |        |        |  |

 Tabelle 17 Berechnete Bindungslängen (Å) und –winkel

Totale Energie  $E_{tot}$ = - 545.744447552 a.u.

Wie beim Thiazylcyanid sind die Bindungslängen etwas kleiner, der NSN-Winkel ist in etwa gleich, der SNC-Winkel fällt wesentlich kleiner aus.

Das Dipolmoment entspricht in etwa, die Atomladungen unterscheiden sich jedoch nicht so stark wie beim Thiazylcyanid. Auch hier ist die S-N-Bindung instabiler als dies durch den einfacheren Basissatz vermittelt wird.

### 4.6.6. Thiazyldiisonitril-Anion [NS(NC)<sub>2</sub>]<sup>-</sup>

| Tabelle 16 Belechnete Billdungstangen (A) und –willker. |       |       |       |               |           |        |  |
|---------------------------------------------------------|-------|-------|-------|---------------|-----------|--------|--|
|                                                         | N-S   | S-N   | N-C   | $N_1SN_{3/4}$ | $N_3SN_4$ | SNC    |  |
| $[NS(NC)_2]^-$                                          | 1.458 | 2.141 | 1.187 | 115.1°        | 90.9°     | 146.2° |  |

**Tabelle 18** Berechnete Bindungslängen (Å) und –winkel :

 Tabelle 19 Berechnete Schwingungswellenzahlen [cm-1] :

| $\widetilde{\upsilon}_{(\mathrm{SNC, in plane})}$   | $\widetilde{\mathcal{U}}_{(\mathrm{SNC,  out  of  pl})}$ | $\widetilde{\upsilon}_{(\mathrm{SNC, out of pl.})}$ | $\widetilde{\mathcal{U}}_{(N_3SN_4,out \text{ of pl.})}$ | $\widetilde{\upsilon}_{(N_3SN_4, \text{ in plane})}$ | $\widetilde{\mathcal{D}}_{(\mathrm{NSN,  out  of  pl.})}$ |
|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|
| 60 (4) [11]                                         | 75 (7) [1]                                               | 86 (0) [13]                                         | 117 (4) [10]                                             | 148 (14) [12]                                        | 167 (127) [5]                                             |
| $\widetilde{\upsilon}_{(\mathrm{NSN,\ in\ plane})}$ | $\widetilde{\upsilon}_{(\mathrm{SC,as.})}$               | $\widetilde{\upsilon}_{({ m SC},{ m s.})}$          | $\widetilde{\upsilon}_{(\mathrm{NS})}$                   | $\widetilde{\upsilon}_{(\mathrm{NC,as.})}$           | $\widetilde{\nu}_{(\mathrm{NC,  s.})}$                    |
| 286 (30) [21]                                       | 322 (163) [0]                                            | 416 (106) [15]                                      | 1390 (91) [84]                                           | 2103 (314) [38]                                      | 2110 (64) [122]                                           |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 3.6692 D

Nettoatomladungen :

N:-0.457604e

- S: 0.747050e
- N:-0.457327e
- N : -0.463318e
- C:-0.199975e
- C:-0.168827e

*Nullpunktsschwingungsenergie*  $E^{\circ}_{vib} = 10.40673$  kcal/mol *Totale Energie*  $E_{tot} = -638.525042556$  a.u.

Die Reaktionsenergie  $\Delta_R E$  für die Reaktion NS<sup>+</sup> + 2CN<sup>-</sup> → NS(NC)<sub>2</sub><sup>-</sup> beläuft sich auf:  $\Delta_R E = -638.525042556 - (-452.527661307 + 2*(-92.8241780186))$  a.u.= -0.349025212 a.u. = -218.9 kcal/mol

Im Vergleich zum NSCN ist die N-S-Bindung gestärkt und verkürzt, die S-N Bindung fällt wesentlich länger aus, NC ist leicht verkürzt. Das Molekül ist also deutlich labiler als NSCN. Der Winkel N1SN3/4 ist relativ ähnlich, N3SN4 ist sehr klein, der Winkel SNC ist ebenfalls relativ klein.

### 4.6.7. Thiazyldinitril-Anion [NS(CN)<sub>2</sub>]<sup>-</sup>

|                | N-S   | S-C   | C-N   | NSC    | CSC   | SCN    |
|----------------|-------|-------|-------|--------|-------|--------|
| $[NS(CN)_2]^-$ | 1.473 | 2.148 | 1.171 | 116.9° | 97.2° | 162.9° |

### Tabelle 20 Berechnete Bindungslängen (Å) und –winkel :

**Tabelle 21** Berechnete Schwingungswellenzahlen [cm<sup>-1</sup>] :

| $\widetilde{\upsilon}_{(\text{SCN, in plane})}$ | $\widetilde{v}_{(\mathrm{NSC, out of pl.})}$        | $\widetilde{v}_{( m SCN,  out  of  pl.)}$           | $\widetilde{\upsilon}_{({ m SCN, out of pl.})}$ | $\widetilde{\upsilon}_{(\mathrm{SC, as})}$ | $\tilde{v}_{(\text{CSC, in plane})}$ |
|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------|
| 72 (4) [9]                                      | 97 (12) [12]                                        | 113 (12) [1]                                        | 156 (50) [3]                                    | 177 (48) [1]                               | 189 (41) [7]                         |
| $\widetilde{\upsilon}_{(\mathrm{SC,s})}$        | $\widetilde{\upsilon}_{(\mathrm{NSC,\ in\ plane})}$ | $\widetilde{\upsilon}_{(\mathrm{NSC, out of pl.})}$ | ${\widetilde \upsilon}_{ m (NS)}$               | $\widetilde{\upsilon}_{({ m CN, as})}$     | $\widetilde{\upsilon}_{(CN, s)}$     |
| 359 (21) [12]                                   | 378 (59) [0]                                        | 483 (81) [4]                                        | 1223 (108) [52]                                 | 2215 (3) [39]                              | 2216 (4) [94]                        |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 3.2273 D

*Nettoatomladungen :* 

N : -0.533855e

S: 0.647436e

C:-0.048569e

C: -0.049194e

N:-0.519460e

N:-0.496360e

*Nullpunktsschwingungsenergie*  $E^{\circ}_{vib} = 11.12208$  kcal/mol

Totale Energie  $E_{tot}$ = - 638.549506262 a.u.

Die Reaktionsenergie  $\Delta_R E$  für die Reaktion NS<sup>+</sup> + 2CN<sup>-</sup>  $\rightarrow$  NS(CN)<sub>2</sub><sup>-</sup> beläuft sich auf:

 $\Delta_{\rm R} E = -638.549506262 - (-452.527661307 + 2*(-92.8241780186)) \text{ a.u.} = -0.373488918 \text{ a.u.}$ 

= - 234.2 kcal/mol

Im Vergleich zum Thiazylnitril ist die N-S-Bindung leicht verkürzt und etwas stärker, jedoch deutlich schwächer als im Isomeren Thiazyldiisonitril. Die S-C-Bindung ist mit 2.148 Å deutlich länger als im NSCN. Dies erklärt die instabile Bindung und die Schwierigkeit im Experiment, das Molekül zu isolieren.

Der Winkel NSC ist größer als im Thiazylnitril ( stärkere  $\pi$ - $\sigma$ -Repulsion ), der Winkel SCN ist kleiner. Die Reaktionsenergie ist deutlich stärker exotherm als im NS(NC)<sub>2</sub><sup>-</sup>.

Geometrie-optimierte Werte für das [NS(CN)2] sind Tabelle 22 zu entnehmen.

|                        | N-S                    | S-C           | C-N                 | NSC        | CSC            | SCN    |  |
|------------------------|------------------------|---------------|---------------------|------------|----------------|--------|--|
| b3lyp/                 | 1.473                  | 2.148         | 1.171               | 116.9°     | 97.2°          | 162.9° |  |
| 6-31G(d)               | 11170                  | 2.11.0        |                     | 1100       | , , , <u>-</u> | 10217  |  |
| b3lyp/<br>6-311+G(3df) | 1.451                  | 2.150         | 1.160               | 116.0°     | 84.5°          | 161.6° |  |
|                        |                        | b3lyp/6-31G(d | b3lyp/6-311+ G(3df) |            |                |        |  |
| Dipolmomen             | Dipolmoment : 3.2273 D |               |                     | 3.3188 D   |                |        |  |
| Nettoatomlad           | lungen :               |               |                     |            |                |        |  |
|                        | N : -0.533855e         |               | 355e                | -0.475294e |                |        |  |
|                        |                        | S: 0.64743    | 36e                 | 0.573870e  |                |        |  |
|                        | C : -0.048569e         |               |                     | 0.229772e  |                |        |  |
| C : -0.049194e         |                        |               | 0.229772e           |            |                |        |  |
|                        | N : -0.519460e         |               |                     | -0.779061e |                |        |  |
|                        | N : -0.496360e         |               |                     | -0.779061e |                |        |  |

**Tabelle 22** Berechnete Bindungslängen (Å) und –winkel :

*Totale Energie*  $E_{tot}$ = - 638.701490753 a.u.

Die NS-Bindung sowie die CN-Bindung fallen etwas kürzer aus, SC ist hingegen länger . Der Winkel NSC ist etwas kleiner, CSC fällt im Vergleich zum vorigen Ergebnis deutlich kleiner aus.

Die Kohlenstoffatome sind wesentlich elektropositiver was zu einer Abstoßung und damit einhergehender CSC-Winkelaufweitung führen könnte. Die Stickstoffatome tragen eine elektronegativere Partialladung.

## 4.6.8. Rhodanid-Anion SCN

| Tabelle 23 B | erechnete | Bindungsl | ängen (Å) | und –winke | el : |
|--------------|-----------|-----------|-----------|------------|------|
| Tabelle 25 D |           | Dindungsi | angen (A) | und whike  | JI . |

|     | S-C   | C-N   | SCN   |
|-----|-------|-------|-------|
| SCN | 2.059 | 1.222 | 68.7° |

# **Tabelle 24** Berechnete Schwingungswellenzahlen [cm<sup>-1</sup>] :

| $\widetilde{\mathcal{U}}_{(\text{SCN, bending})}$                        | $\widetilde{\mathcal{U}}_{(\mathrm{SC})}$ | $\widetilde{\mathcal{U}}_{(\mathrm{CN})}$ |  |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|--|--|
| 299 (5) [8]                                                              | 450 (1) [4]                               | 1848 (16) [41]                            |  |  |  |  |
| IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern |                                           |                                           |  |  |  |  |

Dipolmoment : 0.4517 D

Nettoatomladungen :

N : -0.425565e

C:-0.109453e

S : -0.464982e

Nullpunktsschwingungsenergie  $E^{\circ}_{vib} = 3.71244$  kcal/mol Totale Energie  $E_{tot} = -490.996176604$  a.u.

Die lange C-N-Bindung mit der niedrigen Schwingungswellenzahl dürfte einer Zweifachbindung entsprechen.

### 4.6.9. Thiazylthiocyanat NSSCN

|       | N-S   | S-S   | S-C   | C-N   | NSS    | SSC   | SCN    |
|-------|-------|-------|-------|-------|--------|-------|--------|
| NSSCN | 1.472 | 2.391 | 1.688 | 1.169 | 116.8° | 93.0° | 177.8° |

Tabelle 25 Berechnete Bindungslängen (Å) und -winkel :

**Tabelle 26** Berechnete Schwingungswellenzahlen [cm<sup>-1</sup>] :

| $\widetilde{\mathcal{U}}_{(\text{NSS, out of pl.})}$ | $\tilde{v}_{(SSC, in plane)}$             | $\tilde{\upsilon}_{(SS)}$              | $\widetilde{\mathcal{U}}_{(\mathrm{NSS, in plane})}$ | $\widetilde{\mathcal{U}}_{(\text{SCN, out of plane})}$ |
|------------------------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| 84 (11) [3]                                          | 84 (7) [8]                                | 219 (18) [36]                          | 328 (28) [7]                                         | 405 (3) [2]                                            |
| $\widetilde{\mathcal{U}}_{(	ext{SCN, in plane})}$    | $\widetilde{\mathcal{U}}_{(\mathrm{SC})}$ | $\widetilde{\upsilon}_{(\mathrm{NS})}$ | $\widetilde{\mathcal{U}}_{(\mathrm{CN})}$            |                                                        |
| 441 (25) [2]                                         | 706 (0) [9]                               | 1326 (99) [45]                         | 2248 (25) [238]                                      |                                                        |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 2.4937 D

Nettoatomladungen :

N : -0.301259e

S: 0.555878e

S: 0.004548e

C: 0.112563e

N:-0.371731e

*Nullpunktsschwingungsenergie*  $E^{\circ}_{vib} = 8.34955$  kcal/mol

*Totale Energie*  $E_{tot}$ = - 943.882099492 a.u.

Die Reaktionsenergie  $\Delta_R E$  für die Reaktion NS<sup>+</sup> + SCN<sup>-</sup>  $\rightarrow$  NSSCN beläuft sich auf:

 $\Delta_{\rm R} E = -943.882099492 - (-452.527661307 + (-490.996176604)) a.u. = -0.358261581 a.u. = -224.7 \ \rm kcal/mol$ 

Die NS-Bindung ist länger als im NS<sup>+</sup>. Vergleicht man die SS-Bindung (2.391 Å)mit der Summe der S-S-Kovalenzradien (2.08 Å), so stellt man fest dass diese Bindung sehr lang ist.<sup>28</sup> Diese labile Bindung ist verantwortlich für die experimentellen Schwierigkeiten, das Molekül zu isolieren. Die SC-Bindung wesentlich kürzer als im SCN<sup>-</sup>, was auf eine höhere Bindungsordnung zurückzuführen ist. Der Winkel SSC ist relativ klein.
# 4.6.10. Thiazylisothiocyanat NSNCS

|       | N-S   | S-N   | N-C   | C-S   | NSN    | SNC    | NCS    |
|-------|-------|-------|-------|-------|--------|--------|--------|
| NSNCS | 1.471 | 1.872 | 1.219 | 1.577 | 118.9° | 126.6° | 178.4° |

Tabelle 27 Berechnete Bindungslängen (Å) und -winkel :

**Tabelle 28** Berechnete Schwingungswellenzahlen [cm<sup>-1</sup>] :

| $\widetilde{\mathcal{U}}_{(\mathrm{SNC, in \ plane})}$ | $\widetilde{\mathcal{U}}_{(\text{NSN, out of pl.})}$ | $\tilde{\upsilon}_{(\rm NSN, in plane)}$  | $\tilde{\upsilon}_{(SN)}$   | $\widetilde{\mathcal{U}}_{(\mathrm{NCS, out of pl.})}$ |
|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------------------|--------------------------------------------------------|
| 75 (0) [12]                                            | 100 (11) [1]                                         | 300 (30) [32]                             | 421 (230) [33]              | 494 (7) [0]                                            |
| $\widetilde{\mathcal{U}}_{(	ext{NCS, in plane})}$      | $\widetilde{\mathcal{U}}_{(\mathrm{CS})}$            | $\widetilde{\mathcal{U}}_{(\mathrm{NS})}$ | $\widetilde{\nu}_{ m (NC)}$ |                                                        |
| 559 (13) [9]                                           | 930 (22) [3]                                         | 1318 (96) [34]                            | 1961 (1273) [17]            |                                                        |

IRintensitäten in runden Klammern, Ramanintensitäten in eckigen Klammern

Dipolmoment : 1.6976 D

Nettoatomladungen :

N : -0.336279e

S: 0.677745e

N : -0.589168e

C: 0.278260e

S : -0.030558e

Nullpunktsschwingungsenergie  $E^{\circ}_{vib} = 8.80552 \text{ kcal/mol}$ 

*Totale Energie*  $E_{tot}$ = - 943.891741262 a.u.

Die Reaktionsenergie  $\Delta_R E$  für die Reaktion NS<sup>+</sup> + SCN<sup>-</sup>  $\rightarrow$  NSNCS beläuft sich auf:

 $\Delta_R E = -943.891741262 - (-452.527661307 + (-490.996176604)) a.u. = -0.367903351 a.u. = -230.7 \text{ kcal/mol}$ 

Die C-S-Bindung ist kurz, der Winkel NSN ist größer als im Thiazylthiocyanat. Der Winkel SNC ist relativ klein. Die S-N-Bindung ist vergleichsweise lang (1.872 Å im Gegensatz zur Summe der Kovalenzradien 1.740 Å).<sup>28</sup> Diese schwache S-N-Bindung erklärt die Schwierigkeit, das Molekül im Experiment zu isolieren. Die Bildungsenergie ist stärker exotherm als beim Thiazylthiocyanat.

# 5. Zusammenfassung

Bei der Umsetzung von NSCl mit HgCl<sub>2</sub> konnte durch die Existenz des NS<sup>+</sup> in Lösung Hinweise auf die Eigenschaften des NSCl als Cl'Donor gefunden werden. Bei der Reaktion entstand die bisher einzige binäre S-N-Spezies mit einer N<sub>3</sub>-Gruppierung. Die Ausbeuten des Experiments sind zwar gering, dennoch lässt sich das Experiment reproduzieren. Das Molekül wurde mittels Schwingungsspektroskopie charakterisiert, die erhaltenen Messwerte wurden mit einer *ab initio* Berechnung des  $S_2N_3^+$  verglichen. Des weiteren gelang es, Einkristalle zu züchten, die mittels Röntgenstrukturanalyse untersucht wurden. Dabei stellte sich heraus, dass das Kation  $S_2N_3^+$  abhängig von der Polarität des Lösungsmittels entweder mit Hg<sub>2</sub>Cl<sub>6</sub><sup>2-</sup> oder mit dem bisher nicht bekannten Hg<sub>3</sub>Cl<sub>10</sub><sup>4-</sup> als Gegenion auskristallisiert.



Abbildung 16 Molekülstruktur  $[S_2N_3^+]_2 [Hg_2Cl_6]^{2-1}$ 

Setzt man  $ZnCl_2$  anstatt  $HgCl_2$  ein, so scheint auch  $S_2N_3^+$  zu entstehen (anhand des Ramanspektrums). Bei diesem Experiment stand bis zum jetzigen Zeitpunkt die Einkristallstrukturanalyse aus.

Das neu entdeckte Kation eröffnet eine Vielzahl von neuen Experimenten. Durch die Ähnlichkeit zum  $C_5H_5^-$  könnten, im Rahmen einer sich an diese Arbeit anschließende Promotion, Versuche zur Darstellung Ferrocen-ähnlicher Verbindungen unternommen werden.

Die Reaktionen von  $[Ph_4P]^+[NSCl_2]^-$  mit HgCl<sub>2</sub> und CuCl<sub>2</sub> führten zur Bildung der Anionen  $[HgCl_4]^{2-}$  und  $[Cu_2Cl_6]^{2-}$  und lieferten somit den eindeutigen Beweis für die Cl<sup>-</sup>-Donor-Eigenschaften des Thiazyldichlorids. Die Anionen kristallisierten nach wenigen Tagen mit  $[Ph_4P]^+$  als Gegenion aus und wurden mittels Röntgenstrukturanalyse charakterisiert.

Die Bindungslängen und –winkel der Cl<sup>-</sup>Substitution durch Pseudohalogenide entstehenden Produkte wurden durch quantenmechanische Rechnungen ermittelt. Dabei wurde festgestellt, dass die S-X-Bindung sowohl in NSX als auch im [NSX<sub>2</sub>]<sup>-</sup> sehr labil sind. Die Spezies zerfallen rasch wieder. Die dabei entstehenden Ionen [NS<sup>+</sup>, SCN<sup>-</sup>, CN<sup>-</sup> etc.] und Radikale [z.B. NS<sup>-</sup>] ergeben die im Experiment erhaltene Vielzahl von S-N-Verbindungen.

Bei der Substitution von Cl<sup>-</sup> durch Pseudohalogenide am [NSCl<sub>2</sub>]<sup>-</sup> konnten nur im <sup>14</sup>N-NMR-Experiment Hinweise auf die entstehenden Spezies [NSX<sub>2</sub>]<sup>-</sup> gefunden werden. Es konnten keine eindeutigen Produkte isoliert werden. Die Polymerisationsreaktionen konnten weder durch starkes Verdünnen noch durch die Verwendung von Kältebädern (-70°C) verhindert werden.

Auch durch die Verwendung von Abfangreagenzien (CuNO<sub>3</sub>\*4MeCN, (PdCl<sub>2</sub>PEt<sub>3</sub>)<sub>2</sub>) konnten die entstehenden [NSX<sub>2</sub>]<sup>-</sup> nicht stabilisiert werden. Bei Einsatz von (PdCl<sub>2</sub>PEt<sub>3</sub>)<sub>2</sub> wurde  $[Ph_4P]^+_2[Pd(SCN)_4]^2$  erhalten. Dennoch könnten auch hier im Rahmen einer Promotionsarbeit sicherlich wertvolle Erkenntnisse gewonnen werden.

# 6. Experimenteller Teil

# 6.1. Arbeitstechnik

Alle Arbeitsschritte wurden unter Luft- und Feuchtigkeitsausschluß durch geführt. Dies wurde durch Anwendung von Schlenkgefäßen gewährleistet, die vor Verwendung mit dem Heißluft in drei Arbeitsschritten ausgeheizt und anschließend mit Argon befüllt wurden. Die Edukte sowie Substanzen wurden unter Argon 4/8 der Fa. Messer, Griesheim aufbewahrt. Hydrolyse-empfindliche Edukte und Substanzen wurden in einer Handschuhbox abgewogen und für die Analysen vorbereitet.

Zur Trocknung der Feststoffe wurden diese vor Verwendung in  $CH_2Cl_2$  suspendiert bzw. gelöst, das Lösungsmittel abdestilliert. Die Feststoffe wurden anschließend mind. 1h im Vakuum bei Raumtemperatur getrocknet.

### 6.2. Ausgangsverbindungen und Lösemittel

Die verwendeten Lösungsmittel wurden vor Verwendung frisch destilliert und unter Argon aufbewahrt.

| LM                              | Reinigung    | Trockenmittel                   |
|---------------------------------|--------------|---------------------------------|
| CH <sub>2</sub> Cl <sub>2</sub> | Destillation | P <sub>2</sub> O <sub>5</sub> , |
| Et <sub>2</sub> O               |              | Na                              |
| Hexan                           | Destillation | Molsieb                         |
| CH <sub>3</sub> CN              | Destillation | Molsieb                         |

 Tabelle 29
 Verwendete Lösungsmittel

# 6.3. Analysemethoden

Die Charakterisierung der dargestellten Produkte erfolgte durch Raman-, Infrarot- und Kernresonanspektroskopie sowie Röntgenbeugung am Einkristall. Die verwendeten Geräte sind in Tabelle 30 aufgeführt.

# Tabelle 30

| Analysemethode                     | Meßgerät (Bemerkungen)                                 |
|------------------------------------|--------------------------------------------------------|
| Raman-Spektroskopie                | Perkin Elmer Spektrum 2000R NIR FT, Nd/YAG-Laser 9394  |
|                                    | cm <sup>-1</sup> (10-750mW), Spektren normiert auf 100 |
| IR- Spektroskopie                  | Nicolet 520 FT-IR                                      |
| <sup>14</sup> N-NMR- Spektroskopie |                                                        |
| Einkristallstrukturanalyse         | Angaben siehe Anhang                                   |

#### 6.4. Darstellung der Ausgangschemikalien

#### 6.4.1. (NSCl)<sub>3</sub>

Ansatz:

| NH <sub>4</sub> Cl    | 50 g  | 53.49 g/mol  | 935 mmol |
|-----------------------|-------|--------------|----------|
| <b>S</b> <sub>8</sub> | 10 g  | 32.1 g/mol   | 311 mmol |
| $S_2Cl_2$             | 50 mL | 195.12 g/mol | 1.87 mol |

 $2 \operatorname{NH}_{4}\operatorname{Cl}(s) + 4 \operatorname{S}_{2}\operatorname{Cl}_{2}(l) \rightarrow [\operatorname{S}_{3}\operatorname{N}_{2}\operatorname{Cl}]\operatorname{Cl}(s) + 8 \operatorname{HCl}(g) + \frac{5}{8} \operatorname{S}_{8}(s)$ 

Analog zur Literatur werden in einem ausgeheizten Rundkolben, der mit einem Quarzglasrohr (Länge 50cm) und Trockenrohr (CaCl<sub>2</sub>) versehen ist,  $NH_4Cl$ ,  $S_8$  und  $S_2Cl_2$  vorgelegt.<sup>29</sup>

Unter starkem Rühren erhitzt man die Reaktionsmischung auf  $150^{\circ}$ C. Im Verlauf der Reaktion wird die Temperatur sukzessive auf  $160^{\circ}$ C erhöht. Das Reaktionsprodukt N<sub>2</sub>S<sub>3</sub>Cl<sub>2</sub> scheidet sich in Form roter rhombischer Kristalle im Glasrohr ab. Die Reaktion wird beendet, sobald das S<sub>2</sub>Cl<sub>2</sub> verdampft ist und die Reaktionsmischung "schlammig" wird, um zu verhindern, das N<sub>2</sub>S<sub>3</sub>Cl<sub>2</sub> durch sublimierendes NH<sub>4</sub>Cl verunreinigt wird. Die Vorlage wird durch einen ausgeheizten Dreihalskolben mit Rührfisch, das Trockenrohr durch einen Saugaufsatz ersetzt. Das Glasrohr wird evakuiert, um flüchtige Verbindungen zu entfernen, dabei fallen die Kristalle in die Vorlage.

Ausbeute: 8.11 g (42 mmol, 8.9%; Lit.: 17-25%)

Analytik: Elementaranalyse gemessen: N 14.82%, S 44.2%, Cl 35.8% berechnet: N 14.36%, S 43.3%, Cl 36.3%

$$3 \text{ N}_2\text{S}_3\text{Cl}_2(s) + 3 \text{ Cl}_2(g) \rightarrow 2 \text{ N}_3\text{S}_3\text{Cl}_3(s) + 3 \text{ SCl}_2(l)$$

Über die roten  $N_2S_3Cl_2$  Kristalle wird unter rühren Chlor geleitet (mit  $H_2SO_4$  getrocknet), es entsteht eine braune Flüssigkeit. Nach ca. 15 Minuten wird die Cl<sub>2</sub>-Zuleitung gestoppt. Um entstandenes  $SCl_2$  zu entfernen wird das Reaktionsgefäß 15 min. evakuiert, der entstehende Festkörper ist rot braun. Die Chlorierung wird solange wiederholt, bis sich der Festkörper bei  $Cl_2 - \ddot{U}$ berleitung nicht mehr verfärbt. Das Produkt ist schwefelgelb, pulvrig.

Ausbeute: 10.0 g ( 41 mmol, 98%; Lit.: 99%)

Analytik: Elementaranalyse gemessen: N 17.25%, S 35.98%, Cl 43.08% berechnet: N 17.18%, S 39.33%, Cl 43.49%

Schmelzpunkt 87°C (Lit. 85-91°C)<sup>29</sup>

# 6.4.2. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup>

Ansatz:

| $[Ph_4P]^+[Cl]^-$   | 2.4 g | 374.85 g/mol | 6.0 mmol |
|---------------------|-------|--------------|----------|
| (NSCl) <sub>3</sub> | 0.5 g | 244.58 g/mol | 2.0mmol  |

 $3 [Ph_4P]^+[Cl]^-(s) + (NSCl)_3(s) \rightarrow 3 [Ph_4P]^+[NSCl_2]^-(s)$ 

Zu einer Lösung von  $[Ph_4P]^+[Cl]^-$  in 20 mL  $CH_2Cl_2$  wurde über den Zeitraum einer Stunde eine Lösung von  $(NSCl)_3$  in 15 mL  $CH_2Cl_2$  zugegeben. An der Eintropfstelle ist die Lösung grün, dann nach ca. 2 min ist die Lösung orange. Nach 12h Rühren wird die Lösung über eine Glasfritte (G4) filtriert.

Das Lösungsmittel wurde unter vermindertem Druck abdestilliert. Man erhält ein gelbes, hydrolyseempfindliches Produkt.

Ausbeute: 2.7 g ( 5.9 mmol, 90%; Lit.: 95%)<sup>1</sup>

Analytik:

Ramanspektroskopie (300 mW, RT)[cm<sup>-1</sup>]: 1339 (10,  $\upsilon_s$  (SN)), 308 (2), 293 (2), 222 (4,  $\upsilon_s$  (SCl<sub>2</sub>), 160 (3,  $\upsilon_{as}$  (SCl<sub>2</sub>)) <sup>14</sup>N-NMR (CH<sub>2</sub>Cl<sub>2</sub>):  $\delta = 153$  ppm(s,  $\Delta^{1/2} = 138$  Hz)

### 6.4.3. AgSCN

Ansatz:

| AgNO <sub>3</sub> | 1.39 g | 169.87 g/mol | 8.2 mmol |
|-------------------|--------|--------------|----------|
| NaSCN             | 0.65 g | 81.07 g/mol  | 8.0 mmol |

 $AgNO_3(s) + NaSCN(s) \rightarrow AgSCN(s) + NaNO_3(s)$ 

AgNO<sub>3</sub> wird in 20 mL H<sub>2</sub>O gelöst. NaSCN wird über einen Zeitraum von 15 min. zugegeben. Es entsteht ein weißer Niederschlag von AgCN, die Suspension wird 2h unter Lichtausschluß gerührt und dann abfiltriert. Der Niederschlag wird mit Wasser (3x 10mL), EtOH (3x 10mL) und Diethylether (3x 10mL) gewaschen. Der weiße Niederschlag wird vor Licht geschützt im Trockenschrank (40°C) aufbewahrt.

Ausbeute: 1.12 g (6.7 mmol, 82%; Lit.: quantitativ)<sup>30</sup>

## 6.4.4. AgCN

Ansatz

| AgNO <sub>3</sub> | 1.73 g | 169.87 g/mol | 10.2 mmol |
|-------------------|--------|--------------|-----------|
| KCN               | 0.65 g | 65.12g/mol   | 10.0 mmol |

 $AgNO_3(s) + KCN(s) \rightarrow AgCN(s) + KNO_3(s)$ 

AgNO<sub>3</sub> wird in 20 mL H<sub>2</sub>O gelöst. KCN werden über einen Zeitraum von 15 min. zugegeben. Es entsteht ein weißer Niederschlag von AgCN, die Suspension wird 2h unter Lichtausschluß gerührt und dann abfiltriert. Der Niederschlag wird mit Wasser (3x 10mL), EtOH (3x 10mL) und Diethylether (3x 10mL) gewaschen. Der weiße Niederschlag wird vor Licht geschützt im Trockenschrank (40°C) aufbewahrt. Das trockene Produkt ist leicht grau verfärbt.

Ausbeute: 1.0g (7.5mmol, 78%; Lit.: quantitativ)<sup>22</sup>

### 6.4.5. AgOCN

Ansatz:

| AgNO <sub>3</sub> | 0.65 g | 169.87 g/mol | 4.0 mmol |
|-------------------|--------|--------------|----------|
| NaOCN             | 0.26 g | 65.0 g/mol   | 4.0 mmol |

 $AgNO_3(s) + NaOCN(s) \rightarrow AgOCN(s) + NaNO_3(s)$ 

AgNO<sub>3</sub> werden in 10 mL H<sub>2</sub>O gelöst, NaOCN zugegeben. Es entsteht ein weißer Niederschlag von AgOCN, die Suspension wird 15min. unter Lichtausschluß gerührt und dann abfiltriert. Der Niederschlag wird mit Wasser (3x 10mL), EtOH (3x 10mL) und Et<sub>2</sub>O (3x 10mL) gewaschen. Der weiße Niederschlag wird vor Licht geschützt im Trockenschrank (40°C) aufbewahrt. Das trockene Produkt ist leicht grau verfärbt.

Ausbeute: 0.47 g (3.2 mmol, 79%; Lit.: quantitativ)<sup>31</sup>

#### 6.4.6. $[Ph_4P]^+[CN]^-$

Ansatz:

| $[Ph_4P]^+[Cl]^-$ | 527 mg | 374.85 g/mol | 1.4 mmol |
|-------------------|--------|--------------|----------|
| AgCN              | 187 mg | 133.89 g/mol | 1.4 mmol |

 $[Ph_4P]^+[Cl]^-(s) + AgCN(s) \rightarrow [Ph_4P]^+[CN]^-(s) + AgCl(s)$ 

In einem Schlenkkolben werden  $[Ph_4P]^+[Cl]^-$  in 15 mL  $CH_2Cl_2$  unter rühren gelöst. Zugabe von AgCN unter rühren, es fällt sofort ein weißer Niederschlag von AgCl, der sich im Licht schnell schwarz färbt. Nach 30 min. wird über eine Glasfritte (G4) filtriert. Das LM wird unter vermindertem Druck bei RT abdestilliert. Man erhält ein helles Pulver.

Ausbeute: 510 mg (1.39 mmol, 99%) Analytik: Raman (300 mW, RT)[cm<sup>-1</sup>] : 2127(18), 2059(11), 1481(10), 1438(11), 1313(10)

#### 6.4.7. $[Ph_4P]^+[SCN]^-$

Ansatz:

| $[Ph_4P]^+[Cl]^-$ | 507 mg | 374.85 g/mol | 1.35 mmol |
|-------------------|--------|--------------|-----------|
| AgSCN             | 224 mg | 165.95 g/mol | 1.35 mmol |

 $[Ph_4P]^+[Cl]^-(s) + AgSCN(s) \rightarrow [Ph_4P]^+[SCN]^-(s) + AgCl(s)$ 

In einem Schlenkkolben werden  $Ph_4PCl$  in 15 mL  $CH_2Cl_2$  unter rühren gelöst. Zugabe von AgSCN unter rühren, es fällt sofort ein weißer Niederschlag von AgCl, der sich im Licht schnell schwarz färbt. Nach 30 min. wird über eine Glasfritte (G3) filtriert.

Das LM wird unter vermindertem Druck bei RT abdestilliert. Man erhält ein helles, schuppiges Produkt.

Ausbeute: 529 mg (1.3 mmol, 98%) Analytik: Raman (300 mW, RT)[cm<sup>-1</sup>]: 2057(29), 1108(9), 739(18), 295(15), 264(27), 251(26), 121(69), 96(54)

#### 6.4.8. $[Ph_4P]^+[OCN]^-$

Ansatz:

| $[Ph_4P]^+[Cl]^-$ | 225 mg | 374.85 g/mol | 0.6 mmol |
|-------------------|--------|--------------|----------|
| AgOCN             | 90 mg  | 149.88 g/mol | 0.6 mmol |

 $[Ph_4P]^+[Cl]^-(s) + AgOCN(s) \rightarrow [Ph_4P]^+[OCN]^-(s) + AgCl(s)$ 

In einem Schlenkkolben werden [Ph<sub>4</sub>P]<sup>+</sup>[Cl]<sup>-</sup> in 15mL CH<sub>2</sub>Cl<sub>2</sub> gelöst und langsam mit frisch zubereitetem Silberisocyanat versetzt. Es bildet sich ein rötlicher Niederschlag von AgCl der nach 30min rühren bei Raumtemperatur über eine A4-Fritte abgetrennt wird. Die klare Lösung wird im Hochvakuum bis zur Trockene eingeengt. Es bleibt ein farbloser Feststoff zurück, der mittels Ramanspektroskopie charakterisiert wird.

Ausbeute: 224 mg (0.6 mmol; 98%) Analytik: Raman (300 mW, RT)[cm<sup>-1</sup>]: 2207(5), 1486(4), 1439(6), 1331(15), 754(4), 729(7), 452(4), 295(11), 251(32), 101(58)

#### 6.4.9. CuNO<sub>3</sub> \* 4MeCN

Ansatz:

| Cu                | 1.2 g | 63.55 g/mol  | 18 mmol  |
|-------------------|-------|--------------|----------|
| AgNO <sub>3</sub> | 1.4 g | 168.87 g/mol | 8.2 mmol |

Cu (s) + AgNO<sub>3</sub> (s) + 4 H<sub>3</sub>CCN (l)  $\rightarrow$  CuNO<sub>3</sub> \* 4 H<sub>3</sub>CCN (s) + Ag (s)

In einem 50mL Schlenkkolben werden Cu-Pulver in 50mL Acetonitril suspendiert. Zu dieser Mischung gibt man unter Rühren und Eisbadkühlung langsam festes AgNO<sub>3</sub> wobei sich vorübergehend eine grünblaue Färbung bildet.

Unter Rühren erhitzt man im Rückfluss 30min auf 100°C und trennt die heiße Lösung über eine G3-Fritte vom Niederschlag aus Kupfer und entstandenem Silber ab.

Bereits beim Erkalten bilden sich farblose Kristalle, die im Vakuum vom Lösemittel befreit werden. Das farblose Produkt ist hydrolyseempfindlich.

Ausbeute : 1.88 g ( 6.5 mmol, 79% )

Raman (300 mW, RT)[cm<sup>-1</sup>]: 3327(6), 3232(6), 3169(6), 2987(15), 2931(45), 2538(7), 2303(23), 2273(100), 1379(13), 1041(40), 940(28), 395(23), 229(12), 118(16)

#### 6.5. Untersuchte Reaktionen

### 6.5.1. Darstellung von Hg(NSCl<sub>2</sub>)<sub>2</sub>

Ansatz:

| HgCl <sub>2</sub>   | 419 mg | 271.5 g/mol  | 1.5 mmol |
|---------------------|--------|--------------|----------|
| (NSCl) <sub>3</sub> | 252 mg | 244.58 g/mol | 1.0 mmol |

$$2 (\text{NSCl})_3 (s) + 3 \text{HgCl}_2 (s) \rightarrow 3 \text{Hg}(\text{NSCl}_2)_2 (s?)$$

In 10mL CH<sub>2</sub>Cl<sub>2</sub> wird (NSCl)<sub>3</sub> gelöst und unter rühren zu HgCl<sub>2</sub> gegeben. Die blass gelbe Lösung ist nach einer 1h leicht trüb. Nach 15h hat sich ein leuchtend orange Niederschlag gebildet. Die Suspension wird filtriert (Glasfritte G4). Von der klaren gelben Lösung wird ein <sup>14</sup>N-NMR gemessen, anschließend wird mit Hexan überschichtet und zur Kristallisation stehen gelassen wird.

Der unlösliche Niederschlag wird im IR vermessen, die Signale lassen den Rückschluss zu, dass hier unterschiedliche S-N-Verbindungen sowie Hg–Verbindungen enthalten sind. Eine weitere Charakterisierung war nicht möglich.

Nach mehreren Tagen befinden sich in der Lösung gelbe Kristallnadeln, die mit Hilfe der Ramanspektroskopie vermessen werden. Außerdem wird eine Röntgenstrukturanalyse angefertigt. Es handelt sich nicht um das gewünschte Produkt  $Hg(NSCl_2)_2$ , sondern um  $[S_2N_3]^+_4[Hg_3Cl_{10}]^{4-}$ .

Trennt man die überstehende Lösung ab (unter Argon), so dunkeln die Kristalle nach. Lässt man die Lösung länger stehen, so entstehen rot braune Kristalle, die mittels Ramanspektroskopie charakterisiert werden. Es handelt sich um  $[N_3S_4]^+C\Gamma$ .

Ausbeute:

 $[S_2N_3]^{+}_{4}[Hg_3Cl_{10}]^{4-} \quad 69 mg (5*10^{-2} mmol; 1380.90 g/mol; 10\%)$  $[N_3S_4]^{+}Cl^{-} \quad 41 mg (0.2 mmol; 205.5 g/mol; 20\%)$ 

# Analytik:

<sup>14</sup>N-NMR:  $\delta$ [ppm] = 314(NSCl), 202(SN<sup>+</sup>), -259(NSCl)<sub>3</sub>

 $[S_2N_3]^+_4[Hg_3Cl_{10}]^{4-}$  Raman (500 mW, RT)[cm<sup>-1</sup>] 1180 (0.1,  $\upsilon_a$  (NNN)), 859 (9,  $\delta_{in-plane}$  (NNN)), 815/812 (2,  $\upsilon_s$  (SN)), 516 (10,  $\delta_{in-plane}$  (S<sub>2</sub>N<sub>3</sub><sup>+</sup>)), 433 (1,  $\upsilon$  (SS)); Hg<sub>3</sub>Cl<sub>10</sub><sup>4-</sup>: 377(3, br); 337(4), 320(1), 194(4), 181(3), 157(2), 132(2), 130(2)

IR (KBr plates)[cm<sup>-1</sup>] 1238 (s, br,  $\upsilon_s$  (NNN)), 846 (9,  $\delta_{in-plane}$  (NNN)), 812 (s, br,  $\upsilon_s$  (SN)),

801 (vs, br,  $\upsilon_a$  (SN)), 570 (m, br,  $\delta_{in-plane}$  (S<sub>2</sub>N<sub>3</sub><sup>+</sup>)).

 $[N_3S_4]^+Cl^-$  Raman(300mW, RT)[cm<sup>-1</sup>]: 1172(16), 1003(15), 605(37), 566(47), 448(100), 250 (76), 209(61), 149(21), 109(49)

*Kristallstrukturanalyse:* Hg<sub>3</sub>Cl<sub>10</sub>N<sub>12</sub>S<sub>8</sub>, M = 1380.91, Kristallgröße:  $0.46 \times 0.05 \times 0.04$  mm, gelbe Nadel, monoklin, Raumgruppe  $P2_1/n$ , a = 8.889(10), b = 9.5688(10), c = 17.1702(2) Å,  $\beta = 95.340(13)$ , V = 1454.09(3) Å<sup>3</sup>, Z = 2,  $d_{\text{ber.}} = 3.169 \text{ m}^{-3}$ ,  $\mu = 17.397 \text{ mm}^{-1}$ , F(000) = 1244. Stoe IPDS Flächenzähler, Mo- $K_{\alpha}$ ,  $\lambda = 0.71073$  Å, T = 200(3) K, 20 Bereich = 2.38 to 27.49° in  $-11 \le h \le 11$ ,  $-12 \le k \le 12$ ,  $-22 \le l \le 22$ , registrierte Reflexe: 15465, unabhängige Reflexe: 3337 ( $R_{\text{int}} = 0.0324$ ), beobachtete Reflexe: 3014 ( $F>4\sigma(F)$ ). Strukturlösungsprogramm: SHELXS-97 (G. M. Sheldrick, Universität Göttingen, Deutschland, 1997), direkte Methoden , endgültigee *R* Indices [ $F>4\sigma(F)$ ]: R1 = 0.0370, wR2 = 0.0937 (gesamte Daten), GOF on  $F^2 = 1.269$ , größte Differenz peak/hole: 3.583, -1.508 e Å<sup>-3</sup>, verwendetes Programm: SHELXL-97 (G. M. Sheldrick, Universität Göttingen, Deutschland, 1997).

## 6.5.2. (NSCl)<sub>3</sub> mit HgCl<sub>2</sub> (2:3, ohne Hexan)

Ansatz:

| HgCl <sub>2</sub>   | 412 mg | 271.5 g/mol  | 1.5 mmol |
|---------------------|--------|--------------|----------|
| (NSCl) <sub>3</sub> | 248 mg | 244.58 g/mol | 1.0 mmol |

 $2 (\text{NSCl})_3 (s) + 3 \text{HgCl}_2 (s) \rightarrow 3 \text{Hg(NSCl}_2)_2 (s?)$ 

In 10mL  $CH_2Cl_2$  wird (NSCl)<sub>3</sub> gelöst und unter rühren zu  $HgCl_2$  gegeben. Die blass gelbe Lösung ist nach einer 1h leicht trüb. Nach 15h hat sich ein leuchtend orange Niederschlag gebildet. Die Suspension wird filtriert (Glasfritte G4). Die klare gelbe Lösung wird zur Kristallisation ruhig stehen gelassen.

Der unlösliche Niederschlag wird im IR vermessen, die Signale lassen den Rückschluss zu, dass hier unterschiedliche S-N-Verbindungen sowie Hg–Verbindungen (Reste von HgCl<sub>2</sub>) enthalten sind. Eine weitere Charakterisierung ist nicht möglich.

Nach mehreren Tagen befinden sich in der Lösung gelbe Kristallnadeln, die mit Hilfe der Ramanspektroskopie vermessen werden. Außerdem wird eine Röntgenstrukturanalyse angefertigt.

Im Unterschied zu allen anderen Umsetzungen verfärbt sich die Lösung auch nach mehreren Wochen nicht!

# Ausbeute:

 $[S_2N_3]^+_2[Hg_2Cl_6]^{2-}$  87 mg (0.1 mmol; 826.20 g/mol; 14%)

#### Analytik:

Raman (400 mW, RT)[cm<sup>-1</sup>] 1180 (0.1,  $\upsilon_a$  (NNN)), 859 (9,  $\delta_{in-plane}$  (NNN)), 815/812 (2,  $\upsilon_s$  (SN)), 516 (10,  $\delta_{in-plane}$  (S<sub>2</sub>N<sub>3</sub><sup>+</sup>)), 433 (1,  $\upsilon$  (SS)); Hg<sub>2</sub>Cl<sub>6</sub><sup>2-</sup>: 381(0.5, br); 286(2,br), 142(3, br), 120(2)

*Kristallstrukturanalyse:* Hg<sub>2</sub>Cl<sub>6</sub>N<sub>6</sub>S<sub>4</sub>, M = 826.2, Kristallgröße:  $0.20 \times 0.04 \times 0.04$  mm, gelbe Nadel, triklin, Raumgruppe  $P\bar{1}$ , a = 6.0086(1), b = 8.2445(2), c = 9.2830(2) Å, a = 105.0320 $(11)^{\circ}$ ,  $\beta = 99.2003(11)^{\circ}$ ,  $\gamma = 106.4211$  (14)°, V = 412.289(15) Å<sup>3</sup>, Z = 1,  $d_{\text{ber.}} = 3.32766(12)$ Mg · m<sup>-3</sup>,  $\mu = 20.062$  mm<sup>-1</sup>, F(000) = 368. Nonius Kappa CCD, Mo- $K_{\alpha}$ ,  $\lambda = 0.71073$  Å, T = 200(3),  $\theta$  Bereich = 2.55 to 27.49° in  $-7 \le h \le 7$ ,  $-10 \le k \le 10$ ,  $-12 \le l \le 12$ , registrierte Reflexe: 7569, unabhängige Reflexe: 1881 ( $R_{\text{int}} = 0.0581$ ), beobachtete Reflexe: 177 ( $F>4\sigma(F)$ ). Strukturaufklärungssoftware: SIR97 (G. Cascarano, Acta Crystallogr., Sect A, **1996**, C79) direkte Methoden, endgültige R Indices [ $F>4\sigma(F)$ ]: R1 = 0.0330, wR2 = 0.0836(gesamte Daten), GOF on  $F^2 = 1.073$ , größte Differenz peak/hole: 1.957, -1.979 e Å<sup>-3</sup>,

# 6.5.3. Darstellung von [S<sub>2</sub>N<sub>3</sub>]<sup>+</sup><sub>4</sub>[Hg<sub>3</sub>Cl<sub>10</sub>]<sup>4-</sup>

Diese Reaktion diente einzig als Experiment um die Ausbeute des unter 6.5.1 entstandenen  $S_2N_3^+$ -Kations zu erhöhen.<sup>10</sup>

Ansatz:

| HgCl <sub>2</sub>   | 300 mg | 271.5 g/mol  | 1.1 mmol  |
|---------------------|--------|--------------|-----------|
| (NSCl) <sub>3</sub> | 360 mg | 244.58 g/mol | 1.47 mmol |

4 (NSCl)<sub>3</sub> (s) + 3 HgCl<sub>2</sub> (s) → 
$$[S_2N_3]^+_4[Hg_3Cl_{10}]^{4-}$$
 (s) + 4 SCl<sub>2</sub> (l)

 $(NSCl)_3$  wird in 15mL  $CH_2Cl_2$  gelöst und unter rühren schnell zu trockenem  $HgCl_2$  getropft. Die entstehende Lösung ist schmutzig gelb und leicht trüb. Nach 2h ist ein orange Niederschlag entstanden. Nach 15h wird der Niederschlag abgetrennt (Glasfritte G4).

Der unlösliche Niederschlag wird im IR vermessen, die Signale lassen den Rückschluss zu, dass hier neben Resten von HgCl<sub>2</sub> unterschiedliche S-N-Verbindungen sowie Hg– Verbindungen enthalten sind. Eine weitere Charakterisierung war nicht möglich.

Die klare gelbe Lösung wird mit Hexan versetzt, nach einigen Tagen kristallisieren gelbe Nadeln aus. Die Nadeln werden mit Hilfe der Ramanspektroskopie sowie der Röntgenstrukturanalyse vermessen. Es handelt sich um die gewünschte Verbindung.

Lässt man die Lösung länger stehen, so wird diese langsam dunkler. Es kristallisieren rot braune Kristalle, es handelt sich auch hier um  $[N_3S_4]^+Cl^-$  (anhand Raman).

Ausbeute:

 $[S_2N_3]^{+}_{4} [Hg_3Cl_{10}]^{4-} 345 mg (2.5*10^{-1} mmol; 1380.90 g/mol; 17\%)$  $[N_3S_4]^{+} Cl^{-} 25 mg (0.12 mmol; 205.5 g/mol; 8.3\%)$ 

# Analytik:

 $[S_{2}N_{3}]^{+}_{4}[Hg_{3}Cl_{10}]^{4-} Raman (500 mW, RT) [cm^{-1}] 1180 cm^{-1} (0.1, \upsilon_{a} (NNN)), 859 (9, \delta_{in-plane} (NNN)), 815/812 (2, \upsilon_{s} (SN)), 516 (10, \delta_{in-plane} (S_{2}N_{3}^{+})), 433 (1, \upsilon (SS)); Hg_{3}Cl_{10}^{4-}: 377(3, br); 337(4), 320(1), 194(4), 181(3), 157(2), 132(2), 130(2) ] \\ IR (KBr plates) [cm^{-1}] 1238 (s, br, \upsilon_{s} (NNN)), 846 (9, \delta_{in-plane} (NNN)), 812 (s, br, \upsilon_{s} (SN)), 801 (vs, br, \upsilon_{a} (SN)), 570 (m, br, \delta_{in-plane} (S_{2}N_{3}^{+})).$ 

*Kristallstrukturanalyse:* Hg<sub>3</sub>Cl<sub>10</sub>N<sub>12</sub>S<sub>8</sub>, M = 1380.91, Kristallgröße: 1.00 x 0.10 x 0.01 mm mm, oranges Prisma, monoklin, Raumgruppe  $P2_1/n$ , a = 8.889(10), b = 9.5688(10), c = 17.1702(2) Å,  $\beta = 95.340(13)$ , V = 1454.09(3) Å<sup>3</sup>, Z = 2,  $d_{\text{ber.}} = 3.169$  Mg · m<sup>-3</sup>,  $\mu = 17.397$  mm<sup>-1</sup>, F(000) = 1244. Stoe IPDS Flächenzähler, Mo- $K_{\alpha}$ ,  $\lambda = 0.71073$  Å, T = 200(3) K, 20 Bereich = 4.78 to 44.92° in  $-9 \le h \le 9$ ,  $-10 \le k \le 7$ ,  $-18 \le l \le 18$ , registrierte Reflexe: 5761, unabhängige Reflexe: 1738 (R<sub>int</sub> = 0.0324), beobachtete Reflexe: 1626 (F>4\sigma(F)). Strukturlösungsprogramm: SHELXS-97 (G. M. Sheldrick, Universität Göttingen, Deutschland, 1997), direkte Methoden , endgültige *R* Indices [ $F>4\sigma(F$  R1 = 0.0398, wR2 = 0.0940 (gesamte Daten), GOF on  $F^2 = 1.079$ , größte Differenz peak/hole: 2.165, -2.562 e Å<sup>-3</sup>, verwendetes Programm: SHELXL-97 (G. M. Sheldrick, Universität Göttingen, Deutschland, 1997).

 $[N_3S_4^+]Cl^-$  Raman(300mW, RT) $[cm^{-1}] = 1172(16), 1003(15), 605(37), 566(47), 446(100), 249 (78), 208(60), 149(21), 109(49)$ 

### 6.5.4. (NSCl)<sub>3</sub> und ZnCl<sub>2</sub> (2:3)

Nach der Entstehung des  $S_2N_3^+$ -Kations lag es nahe, die Umsetzungen mit den Elementen der selben Gruppe, Zn und Cd, zu untersuchen. Sollte das gewünschte Kation nicht entstehen, würde diese Umsetzung evtl. zur Bildung von Zn(NSCl<sub>2</sub>)<sub>2</sub> führen.

Ansatz:

| $ZnCl_2$            | 418 mg | 136.30 g/mol | 3.1 mmol |
|---------------------|--------|--------------|----------|
| (NSCl) <sub>3</sub> | 500 mg | 244.58 g/mol | 2.0 mmol |

 $2 (\text{NSCl})_3 (s) + 3 \text{ZnCl}_2 (s) \rightarrow 3 \text{Zn}(\text{NSCl}_2)_2 (s)$ 

In 20mL CH<sub>2</sub>Cl<sub>2</sub> werden (NSCl)<sub>3</sub> gelöst. Die gelbe Lösung wird zu ZnCl<sub>2</sub> getropft. Nach 4h rühren ist die Lösung orange.

Nach weiteren 10h rühren ist ein leuchtend orange farbiger Niederschlag entstanden. Die überstehende Lösung ist gelb. Der Niederschlag wird durch Filtration abgetrennt (Glasfritte G4). Von der Lösung wird ein <sup>14</sup>N-NMR angefertigt. Zur klaren gelben Lösung werden 3mL n-Hexan gegeben, was zur Farbintensivierung führt. Die Lösung wird immer dunkler, nach 4d sind rot braune Kristalle zu erkennen.

Der Zn-haltige orange Niederschlag konnte weder mit IR, Raman oder Elementaranalyse charakterisiert werden.

Von den Kristallen wurde ein Ramanspektrum aufgenommen sowie eine Röntgenstrukturanalyse angefertigt. Analog zu 6.5.1 und 6.5.3 handelt es sich hierbei um  $[N_3S_4]^+CI^-$ .

Ausbeute:

 $[N_3S_4]^+Cl^-$  115 mg (0.55 mmol; 205.5 g/mol; 28%)

Analytik:

 $[N_3S_4]^+Cl^-$  Raman(400mW, RT)[cm<sup>-1</sup>]: 1171(26), 1003(25), 606(44), 566(53), 445(104), 248 (84), 208(65), 149(21), 111(38)

#### 6.5.5. (NSCl)<sub>3</sub> und ZnCl<sub>2</sub> (4:3)

Ansatz:

| ZnCl <sub>2</sub>   | 418 mg | 136.30 g/mol | 3.1 mmol |
|---------------------|--------|--------------|----------|
| (NSCl) <sub>3</sub> | 1.0 g  | 244.58 g/mol | 4.1 mmol |

4 (NSCl)<sub>3</sub> (s) + 3 ZnCl<sub>2</sub> (s) →  $[Zn_3Cl_{10}]^{4-}[S_2N_3]^{+}_{4}$  (s?) + 4 SCl<sub>2</sub> (l)

In 20mL CH<sub>2</sub>Cl<sub>2</sub> werden (NSCl)<sub>3</sub> gelöst. Die gelbe Lösung wird zu ZnCl<sub>2</sub> getropft. Nach 4h rühren ist die Lösung orange.

Nach weiteren 10h rühren ist ein leuchtend orange farbiger Niederschlag entstanden. Die überstehende Lösung ist gelb. Die Lösung wird weitere 72h gerührt und anschließend ruhig stehen gelassen. Nach einigen Tagen sind farblose Kristallnadeln entstanden. Diese werden mittels Ramanspektroskopie vermessen. Das erhaltene Spektrum weist zwar ein schlechtes Signal-Rausch-Verhältnis auf, dennoch lassen die Signale bei (869 und 514cm<sup>-1</sup>) den Rückschluss zu, dass es sich auch hier um das  $N_3S_2^+$ -Kation handelt. Die Kristalle werden röntgenographisch untersucht.

Der Zn-haltige rot orange Niederschlag konnte nicht weiter charakterisiert werden.

Ausbeute:  $\left[Zn_{3}Cl_{10}\right]^{4} \left[S_{2}N_{3}\right]^{+}_{4}(?)$ 

Analytik:  $[S_2N_3]^+_2[ZnCl_4]^2$ -Raman (600mW, RT)[cm<sup>-1</sup>]: 869, 513 Kristallstrukturanalyse: stand zum Abschluss dieser Arbeit noch nicht fest

### 6.5.6. (NSCl)<sub>3</sub> und CdCl<sub>2</sub> (2:3)

Ansatz:

| $CdCl_2$            | 562 mg | 183.32 g/mol | 3.1 mmol |
|---------------------|--------|--------------|----------|
| (NSCl) <sub>3</sub> | 500 mg | 244.58 g/mol | 2.0 mmol |

 $2 (\text{NSCl})_3 (s) + 3 \text{CdCl}_2 (s) \rightarrow 3 \text{Cd}(\text{NSCl}_2)_2 (s)$ 

In 20mL CH<sub>2</sub>Cl<sub>2</sub> werden (NSCl)<sub>3</sub> gelöst. Die gelbe Lösung wird zu CdCl<sub>2</sub> getropft. Nach 5min rühren ist die Lösung grünlich, was auf das Gleichgewicht (NSCl)<sub>3</sub> (gelb)/3NSCl (grün). Nach 14h rühren ist ein grüner Niederschlag entstanden, die überstehende Lösung ist gelbbraun. Von der Lösung wird ein <sup>14</sup>N-NMR angefertigt. Der Niederschlag wird abfiltriert (Glasfritte G4). Zur klaren Lösung werden 3mL n-Hexan gegeben, die Lösung verfärbt sich rot- braun. Die Lösung wird immer dunkler, nach 4d sind rot - braune Kristalle zu erkennen. Der Cd–haltige grau grüne Niederschlag konnte weder mit IR, Raman oder Elementaranalyse

charakterisiert werden.

Von den Kristallen wurde ein Ramanspektrum angefertigt. Analog zu 6.5.1 und 6.5.4 bis 6.5.5 handelt es sich hierbei um  $[N_3S_4^+]Cl^-$ .

Ausbeute:

 $[N_3S_4]^+Cl^-$  127 mg (0.6 mmol; 205.5 g/mol; 31%)

Analytik:

 $[N_3S_4]^+Cl^-$  Raman(300mW, RT)[cm<sup>-1</sup>]: 1172(16), 1003(15), 605(37), 566(47), 446(100), 249 (78), 208(60), 149(21), 109(49)

# 6.5.7. (NSCl)<sub>3</sub> und CdCl<sub>2</sub> (4:3)

Ansatz:

| CdCl <sub>2</sub>   | 564 mg | 183.32 g/mol | 3.1 mmol |
|---------------------|--------|--------------|----------|
| (NSCl) <sub>3</sub> | 1.0 g  | 244.58 g/mol | 4.0 mmol |

4 (NSCl)<sub>3</sub> (s) + 3 CdCl<sub>2</sub> (s) →  $[Cd_3Cl_{10}]^4 [S_2N_3]^4$  (s) + 4 SCl<sub>2</sub> (l)

In 20mL  $CH_2Cl_2$  werden (NSCl)<sub>3</sub> gelöst. Die gelbe Lösung wird zu  $CdCl_2$  getropft. Nach 5min rühren ist die Lösung grünlich.

Nach 14h rühren ist ein grüner Niederschlag entstanden, die überstehende Lösung ist gelb braun. Von der Lösung wird ein <sup>14</sup>N-NMR angefertigt. Der Niederschlag wird abfiltriert (Glasfritte G4). Zur klaren Lösung werden 3mL n-Hexan gegeben, die Lösung verfärbt sich rot braun. Die Lösung wird immer dunkler, nach 4d sind rot braune Kristalle zu erkennen. Wie zuvor unter konnte der Niederschlag nicht identifiziert werden. Von den Kristallen wurde

ein Ramanspektrum angefertigt.

Ausbeute:

 $[N_3S_4]^+Cl^-$  140 mg (0.7 mmol; 205.5g/mol; 34%)

Analytik:

 $[N_3S_4]^+Cl^-$  Raman(300mW, RT)[cm<sup>-1</sup>]: 1172(16), 1004(14), 606(37), 567(47), 447(102), 249 (71), 209(58), 149(21), 111(30)

### 6.5.8. (NSCl)<sub>3</sub> und AuCl<sub>3</sub>

Ansatz:

| AuCl <sub>3</sub>   | 100 mg | 303.36 g/mol | 0.33 mmol |
|---------------------|--------|--------------|-----------|
| (NSCl) <sub>3</sub> | 500 mg | 244.58 g/mol | 0.33 mmol |

 $\operatorname{AuCl}_3(s) + (\operatorname{NSCl})_3(s) \rightarrow (\operatorname{AuNSCl}_2)_3(s)$ 

Eine AuCl<sub>3</sub> Suspension (in 3mL  $CH_2Cl_2$ ) wird zu einer (NSCl)<sub>3</sub> Lösung (in 6mL  $CH_2Cl_2$ ) getropft. An der Zutropfstelle färbt sich die Lösung kurzzeitig dunkel, ist aber nach ein paar Minuten wieder klar gelb. Ein dunkelbrauner Niederschlag, der sich zwischenzeitlich gebildet hatte, löst sich wieder.

Nach 3d rühren wird die Lösung filtriert (Glasfritte G4). Von der Lösung wird ein <sup>14</sup>N-NMR angefertigt. Die klare gelb orange Lösung wird mit Hexan überschichtet, um die Kristallisation zu erleichtern. Der gelb orange Niederschlag, der AuCl<sub>3</sub> zu enthalten scheint, lässt sich wie zuvor schon bei den Reaktionen von Zn und Cd nicht charakterisieren.

Nach 3d sind rot braune Kristalle zu erkennen, die mittels Ramanspektroskopie untersucht wurden.

Ausbeute:

 $[N_3S_4]^+Cl^-$  16 mg (8\*10-2 mmol; 205.5 g/mol; 24%)

Analytik:

 $[N_3S_4]^+Cl^-$  Raman(450mW, RT)[cm<sup>-1</sup>]: 1171(16), 1004(15), 606(37), 565(47), 446(100), 249 (78), 207(59), 149(21), 109(49)

# 6.5.9. (NSCl)<sub>3</sub> und CuCl<sub>2</sub>

Ansatz:

| CuCl <sub>2</sub>   | 165 mg | 134.45 g/mol | 1.23 mmol |
|---------------------|--------|--------------|-----------|
| (NSCl) <sub>3</sub> | 400 mg | 244.58 g/mol | 1.64 mmol |

 $3 \operatorname{CuCl}_2(s) + 2 (\operatorname{NSCl})_3(s) \rightarrow 3 (\operatorname{CuNSCl}_2)_2(s)$ 

Zu CuCl<sub>2</sub> wird eine  $(NSCl)_3 - Lösung$  (in 20mL CH<sub>2</sub>Cl<sub>2</sub>) getropft. Das CuCl<sub>2</sub> ist unlöslich im CH<sub>2</sub>Cl<sub>2</sub>, die überstehende Lösung ist gelb. Nach 3d rühren ist wird ein <sup>14</sup>N-NMR aufgenommen und die Suspension über eine Glasfritte (G4) filtriert. Die erhaltene gelbe Lösung wird mit Hexan überschichtet. Die Lösung wird dunkler, nach einigen Tagen befinden sich rot braune Kristalle am Boden des Reaktionsgefäßes. Diese werden mittels Ramanspektroskopie charakterisiert.

# Ausbeute:

 $[N_3S_4]^+Cl^-$  64 mg (0.3 mmol; 205.5 g/mol; 19%)

### Analytik:

 $[N_3S_4]^+Cl^-$  Raman(300mW, RT)[cm<sup>-1</sup>]: 1172(16), 1003(15), 605(37), 566(47), 446(100), 249 (78), 208(60), 149(21), 109(49)

## 6.5.10. (NSCl)<sub>3</sub> und FeCl<sub>3</sub>

Ansatz:

| FeCl <sub>3</sub>   | 265 mg | 162.21 g/mol | 1.6 mmol |
|---------------------|--------|--------------|----------|
| (NSCl) <sub>3</sub> | 400 mg | 244.58 g/mol | 1.6 mmol |

 $\operatorname{FeCl}_3(s) + (\operatorname{NSCl})_3(s) \rightarrow (\operatorname{FeNSCl}_2)_3(s)$ 

Zu einer FeCl<sub>3</sub>/CH<sub>2</sub>Cl<sub>2</sub> – Suspension wird eine Lösung von (NSCl)<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> getropft. Die rote Lösung wird über Nacht (14h) gerührt. Die Suspension wird über eine Glasfritte (G4) filtriert. Die klare orange Lösung wird mit Hexan überschichtet, was zu einer Verdunklung der Farbe führt. Der anthrazitfarbene Niederschlag besteht aus nicht umgesetztem FeCl<sub>3</sub>. Nach einigen Tagen kristallisieren hell gelbe Prismen aus, die mittels Röntgenstrukturanalyse charakterisiert werden.

Es handelt sich um die bekannte Verbindung  $[S_4N_3]^+[FeCl_4]^{-32}$ 

Ausbeute:

Analytik:

*Kristallstrukturanalyse:* FeCl<sub>4</sub>S<sub>4</sub>N<sub>3</sub>, M = 367.92, Kristallgröße: 0.30 x 0.28 x 0.12 mm, gelbes Prisma, monoklin, Raumgruppe  $P2_1/m$ , a = 13.28230(10) b = 19.32390(10), c = 20.4663(2)Å,  $\beta = 92.5638(2)^\circ$ , V = 5247.74(7) Å<sup>3</sup>, Z = 4,  $d_{\text{ber.}} = 1.5947$  Mg · m<sup>-3</sup>,  $\mu = 3.537$  mm<sup>-1</sup>, F(000) = 2488. Stoe IPDS Flächenzähler, Mo- $K_{\alpha}$ ,  $\lambda = 0.71073$  Å, T = 200(3) K, 20 Bereich = 3.38 to 54.92° in  $-7 \le h \le 8$ ,  $-18 \le k \le 18$ ,  $-15 \le l \le 15$ , registrierte Reflexe: 18205, unabhängige Reflexe: 2589 (R<sub>int</sub> = 0.0508), beobachtete Reflexe: 2198 (F>4 $\sigma$ (F)). Strukturlösungsprogramm: SHELXS-97 (G. M. Sheldrick, Universität Göttingen, Deutschland, 1997), direkte Methoden , endgültige *R* Indices [ $F>4\sigma$ (F R1 = 0.0360, wR2 = 0.0865 (gesamte Daten), GOF on  $F^2 = 1.079$ , größte Differenz peak/hole: 0.709, -0.663 e Å<sup>-3</sup>, verwendetes Programm: SHELXL-97 (G. M. Sheldrick, Universität Göttingen, Deutschland, 1997).

## 6.5.11. (NSCl)<sub>3</sub> und BCl<sub>3</sub>

Ansatz:

| BCl <sub>3</sub>    | 59 mg  | 117.17 g/mol | 0.5 mmol |
|---------------------|--------|--------------|----------|
| (NSCl) <sub>3</sub> | 112 mg | 244.58 g/mol | 0.5 mmol |

 $BCl_3(l) + (NSCl)_3(s) \rightarrow B(NSCl_2)_3(s)$ 

 $N_3S_3Cl_3$  wird in 5mL CH<sub>2</sub>Cl<sub>2</sub> gelöst. Die gelbe Lösung wird auf 0°C gekühlt und über eine Spritze werden 0,5mL BCl<sub>3</sub> – Lösung (1,0molar in Hexan) langsam unter rühren zugetropft. Die Lösung verfärbt sich innerhalb von 15min. von gelb zu orange.

Nach 15h rühren hat sich ein dunkler Niederschlag gebildet, die Lösung ist dunkelrot. Das Reaktionsgemisch wird über eine Glasfritte (G4) filtriert. Die erhaltene rot-braune klare Flüssigkeit wird im <sup>14</sup>N-NMR vermessen und dann zur Kristallisation gestellt. Nach vier Tagen hat sich ein dunkler Niederschlag gebildet, erneut wird über eine Glasfritte (G4) filtriert. Der polymere Niederschlag lässt sich weder mittels Raman- noch über IR-Spektroskopie vermessen.

Auch bei längerem stehen fällt aus der Lösung nur polymerer Niederschlag. Das <sup>14</sup>N-NMR der Lösung lässt auf SN-Verbindungen, wahrscheinlich  $NS_2Cl_2^+$  neben  $SNS^+$  und  $NS^+$ , schließen.<sup>8,33</sup>

<sup>14</sup>N-NMR  $\delta$  (ppm) = 202(NS<sup>+</sup>), 19(NS<sub>2</sub>Cl<sub>2</sub><sup>+</sup>), -90(SNS<sup>+</sup>)

Es sollte untersucht werden, ob es möglich ist, das  $N_3S_2^+$ -Kation direkt aus  $N_3^-$  und  $S_2^{2+}$  darzustellen.

Ansatz:

| NaN <sub>3</sub>  | 808 mg | 65.01 g/mol  | 12.4 mmol |
|-------------------|--------|--------------|-----------|
| HgCl <sub>2</sub> | 1.69 g | 271.50 g/mol | 6.2 mmol  |
| $S_2Cl_2$         | 1 mL   | 135.04 g/mol | 12.4 mmol |

 $2NaN_{3}(s) + 2S_{2}Cl_{2}(l) + HgCl_{2}(s) \rightarrow [S_{2}N_{3}]^{+}_{2}[HgCl_{4}]^{2-}(s) + 2NaCl(s)$ 

 $NaN_3$  und  $HgCl_2$  werden in einem Schlenkkolben vorgelegt und eine Stunde im Vakuum getrocknet. Beide Salze werden in 5mL  $CH_2Cl_2$  suspendiert,  $S_2Cl_2$  wird mit einer Spitze zur Suspension gegeben. Das Reaktionsgemisch färbt sich braun gelb.

Nach 14h Rühren ist die Suspension braun grau. Das Gemisch wird über eine Glasfritte (G4) filtriert. Der graue Niederschlag wird mit solange mit  $CH_2Cl_2$  gespült, bis das LM farblos ist. Die erhaltene klare gelbe Lösung wird mit Hexan versetzt und zur Kristallisation gestellt. Der Niederschlag wird unter vermindertem Druck getrocknet, um Lösungsmittelreste zu entfernen. Anschließend wird ein Ramanspektrum angefertigt.

Ausbeute:

Bis dato noch keine Reaktionsprodukte.

Analytik:

Grauer Niederschlag (HgCl<sub>2</sub>, verunreinigt) Raman(100mW, RT)[cm<sup>-1</sup>]: 381(23), 313(100), 121(19)

Ansatz:

| $(CH_3)_3SiN_3$   | 1.6 mL | 115.21 g/mol | 12.4 mmol |
|-------------------|--------|--------------|-----------|
| HgCl <sub>2</sub> | 1.69 g | 271.50 g/mol | 6.2 mmol  |
| $S_2Cl_2$         | 1 mL   | 135.04 g/mol | 12.4 mmol |

 $2(CH_3)_3SiN_3(l) + 2S_2Cl_2(l) + HgCl_2(s) \rightarrow [S_2N_3]^+_2[HgCl_4]^{2-}(s) + 2(CH_3)_3SiCl(l)$ 

 $HgCl_2$  wird in  $CH_2Cl_2$  suspendiert. Unter rühren wird  $S_2Cl_2$  zugetropft. Die Lösung färbt sich gelb. Nach 30min lebhaften rührens wird  $(CH_3)_3SiN_3$  über eine Spritze zugegeben. Es tritt eine Farbintensivierung ein. Nach 2d ist keine merkliche Farbänderung erkennbar, dennoch befinden sich neben rot braunen Kristallen gelbe ölige Tröpfchen im weißen Niederschlag.

Das Öl wird vorsichtig abpipetiert und mittels Ramanspektroskopie identifiziert. Es handelt sich um nicht umgesetztes  $S_2Cl_2$ . Auch die rot braunen Kristalle sowie der weiße Niederschlag werden im Ramanspektrometer vermessen. Bei dem weißen Niederschlag handelt es sich um HgCl<sub>2</sub> (leicht verunreinigt); das Spektrum der roten Kristalle entspricht dem bekannten des  $S_4N_3^+$ , obwohl schwächere Signale aufgrund des schlechten Signal-Rausch-Verhältnisses nicht eindeutig zu erkennen sind.

Analytik:

Gelbes Öl(S<sub>2</sub>Cl<sub>2</sub>) Raman(100mW, RT)[cm<sup>-1</sup>]: 1448(12) 540(23) 447(93), 240(49), 208(100), 109(38)

Weißer Niederschlag (HgCl<sub>2</sub>) Raman(100mW, RT)[cm<sup>-1</sup>]: 459(23), 314(100), 126(19) Rot braune Kristalle (S<sub>4</sub>N<sub>3</sub><sup>+</sup>) Raman(450mW, RT)[cm<sup>-1</sup>] 609(33), 568(49), 449(100), 251 (68), 209(55), 110(38)

## 6.5.14. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und HgCl<sub>2</sub>

Mit diesem Experiment sollten die Cl<sup>-</sup>-Donor Eigenschaften des  $NSCl_2^-$ -Anions untersucht werden. Dazu wurde  $[Ph_4P^+][NSCl_2^-]$  mit Metallhalogeniden umgesetzt.

#### Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$ | 582 mg                   | 456.38 g/mol                                 | 1.3 mmol                 |
|-----------------------|--------------------------|----------------------------------------------|--------------------------|
| HgCl <sub>2</sub>     | 173 mg                   | 271.5 g/mol                                  | 0.6 mmol                 |
| HgCl <sub>2</sub> (s  | $(s) + 2 [Ph_4P]^+[N]^+$ | $[SCl_2]^{-}(s) \rightarrow Hg(NSCl_2)_2(s)$ | $+ 2 [Ph_4P]^+[Cl]^-(s)$ |

 $[Ph_4P]^+[NSCl_2]^-$  wird in 20mL CH<sub>2</sub>Cl<sub>2</sub> gelöst, in dieser Lösung wird HgCl<sub>2</sub> suspendiert. Nach 15h rühren wird die hell gelbe Lösung filtriert (Glasfritte G4), der leicht gelbliche Niederschlag wird solange mit CH<sub>2</sub>Cl<sub>2</sub> gewaschen, bis das LM farblos ist. Vom Niederschlag wird ein Ramanspektrum angefertigt, es handelt sich um nicht umgesetztes HgCl<sub>2</sub>.

Das  $CH_2Cl_2$  wird aus der gelben Lösung abdestilliert. Es verbleibt ein wachsartiger, orange Rückstand. Das Ramanspektrum deutet auf ein Produktgemisch hin ( $[Ph_4P]^+[NSCl_2]^-$  und andere Produkte). Der Rückstand wird in  $CH_2Cl_2$  aufgenommen, man erhält eine klare, gelbe Lösung, die mit Hexan versetzt wird.

Nach einigen Stunden fallen farblose Kristalle aus. Die Lösung wird abdekantiert und aufbewahrt. Die farblosen Kristalle werden vermessen. Die Lösung wird eingeengt, nach einigen Tagen erhält man erneut farblose Kristalle, die mittels Röntgenstrukturanalyse charakterisiert werden.

Ausbeute:  $[Ph_4P]^+_2[HgCl_4]^{2-}$  120 mg (0.18 mmol, 30%)

Analytik:

Weißer Niederschlag (HgCl<sub>2</sub> Raman(100mW, RT)[cm<sup>-1</sup>]: 382(3), 314(100), 127(20)

*Kristallstrukturanalyse*:  $[Ph_4P]^+{}_2[HgCl_4]^{2^-}$ , M= 1259.93, Kristallgröße 0.42 x 0.30 x 0.28 mm<sup>3</sup>, farbloser Quader, monoklin, Raumgruppe P1 21/m , a = 13.28230(10) Å, b = 19.32390(10) Å, c = 20.4663(2) Å,  $\beta$  = 92.5638(2)°, V = 5247.74(7) Å<sup>3</sup>, Z = 4, *d<sub>ber</sub>*.= 1.5947g/cm<sup>3</sup>,  $\mu$  = 3.537 mm<sup>-1</sup>, F(000) = 2488. KappaCCD, Mo-K<sub> $\alpha$ </sub>  $\lambda$  = 0.71073 Å, T = 200(2) K, 20 Bereich = 1.45 bis 23.99° in -15 ≤ h ≤ 15, -22 ≤ k ≤ 21, -23 ≤ 1 ≤ 23, registrierte Reflexe : 8235, unabhängige Reflexe: 7084 ( $R_{int}$  = 0.0508 ), beobachtete Reflexe 4144 (F>4 $\sigma$ (F) ). Strukturaufklärungssoftware: SHELXS-97-2 (Sheldrick, 1997), endgültige R Indices [F>4 $\sigma$ (F)]: R<sub>1</sub> = 0.0426, wR<sub>2</sub> = 0.1177, GOF = 1.147, größte Differenz peak/hole: 1.624, -2.159 e Å<sup>3</sup>

# 6.5.15. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und CuCl<sub>2</sub>

Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$ | 750 mg | 456.38 g/mol | 1.6 mmol |
|-----------------------|--------|--------------|----------|
| CuCl <sub>2</sub>     | 110 mg | 134.45 g/mol | 0.8 mmol |

 $\operatorname{CuCl}_2(s) + 2 \left[\operatorname{Ph}_4 P\right]^+ \left[\operatorname{NSCl}_2\right]^-(s) \rightarrow \operatorname{Cu}(\operatorname{NSCl}_2)_2(s) + 2 \left[\operatorname{Ph}_4 P\right]^+ \left[\operatorname{Cl}\right]^-(s)$ 

CuCl<sub>2</sub> und  $[Ph_4P^+][NSCl_2^-]$  werden mit 20mL CH<sub>2</sub>Cl<sub>2</sub> versetzt. Die Lösung färbt sich rot, ein kleiner Rückstand CuCl<sub>2</sub> löst sich nach wenigen Minuten. Von der klaren roten Lösung wird ein <sup>14</sup>N-NMR – Spektrum angefertigt. Zur Kristallisation wird langsam Hexan eindiffundiert. Nach 16h befinden sich rote Kristalle neben einen leuchtend gelben Niederschlag im Kolben. Der gelbe Niederschlag lässt sich nicht mittels IR und Raman vermessen. Laut Elementaranalyse besteht der Niederschlag hauptsächlich aus C(60,67%) und H(4,40%), es sind nur Spuren von S(0,78%) und N(0,44%) enthalten, es handelt sich also nicht um Cu(NSCl<sub>2</sub>)<sub>2</sub>. Die roten Kristalle wurden mittels Röntgenstrukturanalyse charakterisiert .

Ausbeute:  $[Ph_4P]^+_2[Cu_2Cl_6]^{2-}$  250mg (0.25 mmol, 62%)

## Analytik:

*Kristallstrukturanalyse*: C<sub>12</sub>H<sub>10</sub>Cl<sub>1.50</sub>Cu<sub>0.50</sub>P<sub>0.50</sub>, M = 254.63, Kristallgröße: 0.40 x 0.40 x 0.30 mm<sup>3</sup>, rote Prismen, monoklin, Raumgruppe P2(1)/n, a = 9.1639(9), b = 19.275(2), c = 13.411(1) Å, β = 108.18(2)°, V = 2252.7(4) Å<sup>3</sup>, Z = 8, *d*<sub>ber.</sub> = 1.502 mg/m<sup>3</sup>, μ = 1.405 mm<sup>-1</sup>, F(000) = 1036. Siemens SMART Flächenzähler, Mo-K<sub>α</sub>  $\lambda$  =0.71073 Å, T = 193(2) K, 20 Bereich = 3.82 bis 58.50° in -11 ≤ h ≤ 11, -24 ≤ k ≤ 24, -17 ≤ 1 ≤ 16, registrierte Reflexe: 12855, unabhängige Reflexe 4467 (*R*<sub>int</sub> = 0.0310), beobachtete Reflexe 3490 (F>4σ(F)). Strukturaufklärungssoftware : SHELXS-97 (Sheldrick, 1997), endgültige R Indices [F>4((F)]: R<sub>1</sub> = 0.0318, wR<sub>2</sub> = 0.0750, GOF on F2 = 1.019, größte Differenzen peak/hole: 0.304, -0.421 e Å<sup>3 34</sup>

## 6.5.16. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und AgSCN bei RT

Mit den folgenden Reaktionen sollte festgestellt werden, ob Cl<sup>-</sup> in [NSCl<sub>2</sub>]<sup>-</sup> durch Pseudohalogene (SCN<sup>-</sup>, CN<sup>-</sup> und OCN<sup>-</sup>) ersetzt werden kann. Die erhaltenen Produkte waren Gegenstand eingehender Untersuchungen.

Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$ | 150 mg | 456.38 g/mol | 0.3 mmol |
|-----------------------|--------|--------------|----------|
| AgSCN                 | 109 mg | 165.95 g/mol | 0.6 mmol |

 $[Ph_4P]^+[NSCl_2]^-(s) + 2 AgSCN(s) \rightarrow [Ph_4P]^+[NS(SCN)_2]^-(s) + 2 AgCl(s)$ 

In 15mL CH<sub>2</sub>Cl<sub>2</sub> wird  $[Ph_4P]^+[NSCl_2]^-$  gelöst. Zu der klaren gelben Lösung gibt man AgSCN zu, sofort fällt ein käsiger Niederschlag (AgCl). Der Reaktionsansatz wird mit Al – Folie vor Lichteinfall geschützt. Der Ansatz wird über Nacht (15h) gerührt. Die Suspension wird filtriert (G4). Der Rückstand ist weißlich gelb, er färbt sich am Licht schnell dunkel (AgCl). Die klare gelbe Lösung wird mit Hexan überschichtet und zu Kristallisation stehen gelassen. Nach einigen Stunden bilden sich farblose, durchscheinende rhomboedrische Kristalle, die mittels Ramanspektroskopie vermessen werden. Es handelt sich um  $[Ph_4P]^+[SCN]^-$ . Die Lösung wird filtriert, auf ca. 2/3 eingeengt und nochmals mit Hexan überschichtet. Abermals erhält man  $[Ph_4P]^+[SCN]^-$ . Die Operation wird wiederholt, man erhält neben gelben Kristallen, die sich spektroskopisch (Raman) nicht von  $[Ph_4P]^+[SCN]^-$  unterscheiden, unlösliche  $[NS]_x - Polymere$ .

# 6.5.17. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und AgSCN bei –70°C

Um Polymerisationsreaktionen zu verhindern, wurde die Umsetzung von  $[Ph_4P]^+[NSCl_2]^-$  mit AgSCN bei  $-70^{\circ}$ C durchgeführt. Die tiefen Temperaturen wurden durch ein iso – Propanolbad, das mit festem CO<sub>2</sub> versetzt wurde, erreicht.

Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$ | 155 mg | 456.38 g/mol | 0.34 mmol |
|-----------------------|--------|--------------|-----------|
| AgSCN                 | 112 mg | 165.95 g/mol | 0.67 mmol |

 $[Ph_4P]^+[NSCl_2]^-(s) + 2 AgSCN(s) \rightarrow [Ph_4P]^+[NS(SCN)_2]^-(s) + 2 AgCl(s)$ 

In 15mL  $CH_2Cl_2$  wird  $[Ph_4P]^+[NSCl_2]^-$  gelöst und auf  $-70^{\circ}C$  gekühlt.. Zu der klaren gelben Lösung gibt man AgSCN zu, der AgCl – Niederschlag beginnt erst nach einigen Minuten auszufallen. Der Reaktionsansatz wird mit Al – Folie vor Lichteinfall geschützt und über Nacht (15h) gerührt. Die Suspension wird über eine gekühlte Glasfritte (G4) filtriert. Der Rückstand ist weißlich gelb, er färbt sich am Licht schnell dunkel (AgCl).

Die klare gelbe Lösung (Farbe analog zu 4.6.17) wird mit gekühltem Hexan überschichtet und zu Kristallisation bei  $-15^{\circ}$ C stehen gelassen. Nach einigen Stunden bilden sich farblose, durchscheinende rhomboedrische Kristalle, die mittels Ramanspektroskopie vermessen werden. Es handelt sich um [Ph<sub>4</sub>P]<sup>+</sup>[SCN]<sup>-</sup>.

Wird die Lösung weiter eingeengt, so erhält man abermals Ph<sub>4</sub>PSCN und [NS]<sub>x</sub> – Polymere.

## 6.5.18. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und AgSCN mit (PdCl<sub>2</sub>PEt<sub>3</sub>)<sub>2</sub> als Komplexbildner

Um die Entstehung von  $[NS]_x$  – Polymeren zu verhindern, sollte der zweikernige Pd – Komplex als "Abfang-" Reagenz für die entstehende  $[NS(SCN)_2]^-$  – Spezies sein.

Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$                                                                                                                      | 470 mg                               | 456,38 g/mol                                      | 1,0 mmol                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|--|--|
| AgSCN                                                                                                                                      | 341 mg                               | 165.95 g/mol                                      | 2.1 mmol                  |  |  |
| $(PdCl_2PEt_3)_2$                                                                                                                          | 609 mg                               | 590.97 g/mol                                      | 1.0 mmol                  |  |  |
| $[\text{NSCl}_2]^{-}(\text{s}) + 2 \text{ AgSCN}(\text{s}) \rightarrow [\text{NS}(\text{SCN})_2]^{-}(\text{s}) + 2 \text{ AgCl}(\text{s})$ |                                      |                                                   |                           |  |  |
| [NS                                                                                                                                        | $(SCN)_2]^{-}(s) + \frac{1}{2}(Pet)$ | $dCl_2PEt_3)_2(s) \rightarrow [PdCl_2PEt_3)_2(s)$ | $[t_3]^+[NS(SCN)_2]^-(s)$ |  |  |

In 15mL  $CH_2Cl_2$  wird  $[Ph_4P]^+[NSCl_2]^-$  gelöst. Zur gelben Lösung wird AgSCN gegeben, die Lösung verfärbt sich bräunlich, teils durch unlösliches AgSCN teils durch AgCl hervorgerufen. Nach 2h rühren wird die Suspension filtriert (G4).

Die klare gelbe Lösung wird mit  $(PdCl_2PEt_3)_2$  versetzt, sofort verfärbt sich die Lösung orange, ein feiner Niederschlag ist zu erkennen. Die Lösung wird 15h weiter gerührt, dann filtriert (G4). Die Lösung wird mit Hexan versetzt, nach 12h haben sich farblose Kristalle gebildet, die lt. Raman  $[Ph_4P]^+[SCN]^-$  darstellen. Erneut wird filtriert und Hexan zugegeben. Nach einigen Tagen sind rote Kristallnadeln zu erkennen, die mittels Röntgenstrukturanalyse charakterisiert werden.

## Analytik:

*Kristallstrukturanalyse*: Pd<sub>2</sub>S<sub>8</sub>C<sub>104</sub>N<sub>8</sub>P<sub>4</sub>H<sub>80</sub>, M= 2035.09, Kristallgröße 0.18 x 0.06 x 0.05 mm<sup>3</sup>, rote Nadeln, monoklin, Raumgruppe P1 21/n 1, a = 10.0829(1) Å, b = 15.8901(1) Å, c =14.5785(1) Å,  $\beta = 91.7217(4)^{\circ}$ , V = 2334.69(3) Å<sup>3</sup>, Z = 2,  $d_{\text{her}} = 1.447 \text{ g/cm}^3$ ,  $\mu = 0.686 \text{ mm}^{-1}$ F(000) = 1040. KappaCCD, Mo-K<sub>a</sub>  $\lambda = 0.71073$  Å, T = 200(2) K, 20 Bereich = 1.90 bis  $27.48^{\circ}$  in  $-12 \le h \le 13$ ,  $-20 \le k \le 20$ ,  $-18 \le l \le 18$ , registrierte Reflexe : 40926, unabhängige Reflexe: 5345  $(R_{\rm int})$ = 0.0648 ), beobachtete Reflexe 4144  $(F>4\sigma(F)).$ Strukturaufklärungssoftware: SHELXS-97-2 (Sheldrick, 1997), endgültige R Indices  $[F>4\sigma(F)]$ :  $R_1 = 0.0402$ ,  $wR_2 = 0.1102$ , GOF = 1.148, größte Differenz peak/hole: 0.804, -1.555 e Å<sup>3</sup>

# 6.5.19. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und AgSCN mit CuNO<sub>3</sub> \* 4 MeCN als Komplexbildner

Nachdem der Einsatz von  $(PdCl_2PEt_3)_2$  nicht das gewünschte Ergebnis gebracht hatte, sollte CuNO<sub>3</sub>\*4MeCN den erwünschten Erfolg bringen.

| $[Ph_4P]^+[NSCl_2]^-$    | 250 mg | 456.38 g/mol | 0.6 mmol |
|--------------------------|--------|--------------|----------|
| AgSCN                    | 270 mg | 165.95 g/mol | 1.6 mmol |
| CuNO <sub>3</sub> *4MeCN | 175 mg | 253.73 g/mol | 0.7 mmol |

$$[NSCl_2]^{-}(s) + 2 \text{ AgSCN } (s) \rightarrow [NS(SCN)_2]^{-}(s) + 2 \text{ AgCl } (s)$$
$$[NS(SCN)_2]^{-}(s) + CuNO_3 (s) \rightarrow CuNO_3 * [NS(SCN)_2]^{-}(s)$$

In 15mL  $CH_2Cl_2$  wird  $[Ph_4P]^+[NSCl_2]^-$  gelöst. Zur gelben Lösung wird AgSCN gegeben, die Lösung verfärbt sich bräunlich, teils durch unlösliches AgSCN teils durch AgCl hervorgerufen. Nach 2h rühren wird die Suspension filtriert (G4).

Zur gelb - orange Lösung wird zur Komplexierung eine äquimolare Menge festes Tetrakis(acetonitril)kupfer-I-nitrat  $CuNO_3 * 4$  MeCN zugesetzt. Nach 1 Stunde rühren lag eine braune Suspension vor, die über eine G4 Glasfritte filtriert wurde. Die Farbe der erhaltenen Lösung lässt sich als Cognac ähnlich beschreiben.

Nach Überschichten mit Diethylether fiel ein beige Niederschlag aus der mit Et<sub>2</sub>O gewaschen und mittels Ramanspektroskopie untersucht wurde.

Analytik:

Raman (300mW, RT)[cm-1]: 3064(60), 2112(11), 2095(10), 2086(11), 1586(67), 1482(6), 1188(15), 1167(11), 1099(30), 1029(44), 1002(100), 720(15,  $S_4N_4$ ,  $\upsilon_s$  (SN)), 615(2), 559(19,  $S_4N_4$ ,  $\delta$  (SSN)), 349(10,  $S_4N_4$ ,  $\delta$  (SSN)), 252(3), 216(22,  $S_4N_4$ ,  $\upsilon_s$  (SS)), 198(26,  $S_4N_4$ ,  $\upsilon_{as}$  (SS)), 122(7), 100(9)

[S<sub>4</sub>N<sub>4</sub>] Zuordnung siehe <sup>35</sup>. Alle anderen Signale entsprechen Ph<sub>4</sub>PSCN!

# 6.5.20. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und AgCN

Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$ | 818 mg | 456.38 g/mol | 1.8 mmol |
|-----------------------|--------|--------------|----------|
| AgCN                  | 1.29 g | 133.89 g/mol | 9.7 mmol |

 $[Ph_4P]^+[NSCl_2]^-(s) + 2 \text{ AgCN}(s) \rightarrow [Ph_4P]^+[NS(CN)_2]^-(s) + 2 \text{ AgCl}(s)$ 

[Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> wird in 15mL CH<sub>2</sub>Cl<sub>2</sub> gelöst. Zur gelben Lösung wird AgCN gegeben, es entsteht ein heller, "käsiger" Niederschlag (AgCl) unter einer rot braunen Lösung. Der Ansatz wird mit Al – Folie vor Licht geschützt. Nach 15h rühren wird die Suspension filtriert (G3). Von der erhaltenen klaren rot braunen Lösung wird ein <sup>14</sup>N-NMR angefertigt, anschließend wird mit Hexan überschichtet.

Nach einigen Tagen erhält man gelb braune Kristalle zwischen dunklem Niederschlag. Die Kristalle werden mittels Ramanspektroskopie vermessen, es handelt sich um  $[Ph_4P]^+[CN]^-$  mit Verunreinigungen, wahrscheinlich S–N–Verbindungen (Signale zwischen 1300 und 1400cm<sup>-1</sup>), die nicht genauer charakterisiert werden konnten. Der unlösliche Niederschlag scheint sich aus  $[NS]_x$  – Polymeren zusammenzusetzen.

Analytik:

<sup>14</sup>N-NMR (δ = 202 (SN<sup>+</sup>), -99 (Ph<sub>4</sub>CN), -165 (NS(CN)<sub>2</sub><sup>-</sup>?), -222 (NS(NC)<sub>2</sub><sup>-</sup>?), -257 (NSCl)<sub>3</sub>

### 6.5.21. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und AgCN mit (PdCl<sub>2</sub>PEt<sub>3</sub>)<sub>2</sub> als Komplexbildner

Um Polymerisationsreaktionen zu verhindern, wurde die Umsetzung von  $[Ph_4P]^+[NSCl_2]^-$  mit AgCN bei -70°C durchgeführt. Die tiefen Temperaturen wurden durch ein iso-Propanolbad, das mit festem CO<sub>2</sub> versetzt wurde, erreicht.

Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$ | 820 mg | 456.38 g/mol | 1.8 mmol |
|-----------------------|--------|--------------|----------|
| AgCN                  | 1.30 g | 133.89 g/mol | 9.7 mmol |

 $[Ph_4P]^+[NSCl_2]^-(s) + 2 \text{ AgCN}(s) \rightarrow [Ph_4P]^+[NS(CN)_2]^-(s) + 2 \text{ AgCl}(s)$ 

[Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> wird in 15mL CH<sub>2</sub>Cl<sub>2</sub> gelöst. Zur gelben Lösung wird AgCN gegeben, bei der zunächst gelben Suspension trat nach ca. 30min ein Farbwechsel nach intensivem dunkelgrün auf.

Nach Filtration eines Teils der Suspension über eine mit Trockeneis vorgekühlte Fritte lag eine grüne Lösung vor die bei  $-35^{\circ}$ C im Eisfach (mit festem CO<sub>2</sub>) aufbewahrt wurde. Nach 3 Tagen war die Lösung zäh flüssig, von der Lösung wird ein Raman Spektrum aufgenommen (NS(CN)<sub>2</sub><sup>-</sup> oder NS(NC)<sub>2</sub><sup>-</sup>).

Die restliche grüne Suspension färbte sich durch Erwärmung in der Fritte auf über  $-25^{\circ}$ C rot. Anschließend wurde mit n-Hexan überschichtet und bei Raumtemperatur gelagert. Es bilden sich nach einigen Tagen rot orange Kristalle, die mittels Ramanspektroskopie untersucht wurden, es handelt sich um S<sub>4</sub>N<sub>4</sub>.

#### Analytik:

grüne Lösung Raman [cm<sup>-1</sup>]: 2229 (C-N-Schwingung), 2148(14,  $\upsilon_s$  (C-N)), 2136( $\upsilon_{as}$  (CN)) 1329( $\upsilon_s$  (SN)).

 $S_4N_4$  Raman (250mW, RT)[cm-1]: 720(48,  $S_4N_4$ ,  $υ_s$  (SN)), 559(57,  $S_4N_4$ , δ (SSN)), 349(22,  $S_4N_4$ , δ (SSN)), 215(84,  $S_4N_4$ ,  $υ_s$  (SS)), 189(100,  $S_4N_4$ ,  $υ_{as}$  (SS))<sup>27</sup>

# 6.5.22. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und AgOCN bei RT

Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$ | 245 mg | 456.38 g/mol | 0.5 mmol |
|-----------------------|--------|--------------|----------|
| AgOCN                 | 300 mg | 149.89 g/mol | 2.0 mmol |

 $[Ph_4P]^+[NSCl_2]^-(s) + 2 \text{ AgOCN } (s) \rightarrow [Ph_4P]^+[NS(OCN)_2]^-(s) + 2 \text{ AgCl } (s)$ 

In einem Schlenkkolben werden 245mg (0.54mmol) [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> in 15mL CH<sub>2</sub>Cl<sub>2</sub> gelöst und bei Raumtemperatur langsam unter Rühren mit AgOCN versetzt. Es bildet sich eine vorübergehende rote Färbung und anschließend eine gelbe Suspension, die nach 2h Rühren über eine A4-Fritte vom Niederschlag abgetrennt wird. Von der gelben Lösung wurde ein <sup>14</sup>N-NMR-Spektrum gemessen.

Die Lösung wurde zur Kristallisation mit einer äquivalenten Menge Hexan überschichtet und bei RT stehen gelassen. Bereits nach einigen Stunden bildete sich ein feiner gelber Niederschlag, die Lösung wir immer dunkler (braun). Eine Kristallisation trat nicht ein.

Analytik:

<sup>14</sup>N-NMR: δ (ppm) = -80 (S=N ?), -184 ([NS(OCN)<sub>2</sub><sup>-</sup>]?), -257 (NSCl)<sub>3</sub>

# 6.5.23. [Ph<sub>4</sub>P]<sup>+</sup>[NSCl<sub>2</sub>]<sup>-</sup> und AgOCN bei –70°C

Ansatz:

| $[Ph_4P]^+[NSCl_2]^-$ | 674 mg | 456.38 g/mol | 1.5 mmol |
|-----------------------|--------|--------------|----------|
| AgOCN                 | 390 mg | 149.89 g/mol | 2.6 mmol |

 $[Ph_4P]^+[NSCl_2]^-(s) + 2 \text{ AgOCN } (s) \rightarrow [Ph_4P]^+[NS(OCN)_2]^-(s) + 2 \text{ AgCl } (s)$ 

In einem Schlenkkolben wird  $[Ph_4P]^+[NSCl_2]^-$  in 15mL  $CH_2Cl_2$  gelöst und mit iso-Propanol/Trockeneis auf  $-70^{\circ}C$  gekühlt. Zu dieser Lösung gibt man langsam unter Rühren AgOCN. Es bildet sich langsam eine ocker gelbe Suspension, die nach 2h Rühren im Kältebad über eine A4-Fritte vom Niederschlag abgetrennt wird. Von der erhaltenen orangen Lösung wurde ein <sup>14</sup>N-NMR-Spektrum gemessen. Die Lösung wurde zur Kristallisation mit einer äquivalenten Menge Hexan überschichtet und bei  $-15^{\circ}C$  aufbewahrt.

Nach 2 Tagen befand sich wenig roter Niederschlag im Kolben ( $[NS]_x$ -Polymere), nach weiteren 2 Wochen bildete sich ein dunkelrotes Öl von dem ein Ramanspektrum aufgenommen wurde.

Analytik:

<sup>14</sup>N-NMR: δ (ppm) = -80 (SN), -184 ( $NS(OCN)_2^{-?}$ ), -257 (NSCl)<sub>3</sub> Raman (250mW, RT)[cm<sup>-1</sup>]: 1439, 1339, 1319, 699, 660 nur Ph4PCl !
## 7. Anhang

Die Strukturen unter 7.1 und 7.2 wurden am Fachinformationszentrum Karlsruhe (FIZ) unter der CSD Nr. 411916 (7.1) und 411915 (7.2) registriert. Kopien können angefordert werden unter: Fachinformationszentrum Karlsruhe, Hermann von Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen (e-mail: crysdata@fiz-karlsruhe.de).

## 7.1. Kristallographische Daten $[S_2N_3]^+_4[Hg_3Cl_{10}]^{4-}$

 $Summenformel: Cl_{10}\,Hg_3\,N_{12}\,S_8$ 

| Tab. 31 | Crystal data and data collection                                    |
|---------|---------------------------------------------------------------------|
| Tab. 32 | Solution and refinement                                             |
| Tab. 33 | Atomic coordinates and equivalent isotropic displacement parameters |
| Tab. 34 | Bond lengths and angles                                             |
| Tab. 35 | Anisotropic displacement parameters                                 |
| Tab. 36 | Hydrogen coordinates and isotropic displacement parameters          |

### Table 31: Crystal data and data collection

| Empirical formula                    | $Cl_{10}$ Hg <sub>3</sub> N <sub>12</sub> S <sub>8</sub> |                             |  |
|--------------------------------------|----------------------------------------------------------|-----------------------------|--|
| Formula weight                       | 1380.87                                                  |                             |  |
| Crystal size                         | 1.00 x 0.10 x 0.01 mm                                    |                             |  |
| Crystal color and habit              | orange prism                                             |                             |  |
| Crystal system                       | Monoclinic                                               |                             |  |
| Space group                          | P2(1)/n                                                  |                             |  |
| Unit cell dimensions                 | a = 8.882(2) Å                                           | $\alpha = 90^{\circ}$       |  |
|                                      | b = 9.564(2) Å                                           | $\beta = 95.421(4)^{\circ}$ |  |
|                                      | c = 17.112(5)  Å                                         | $\gamma=90^\circ$           |  |
| Volume                               | 1447.1(7) Å <sup>3</sup>                                 |                             |  |
| Ζ                                    | 2                                                        |                             |  |
| Density (calculated)                 | 3.169 Mg/m <sup>3</sup>                                  |                             |  |
| Absorption coefficient               | 17.397 mm <sup>-1</sup>                                  |                             |  |
| F(000)                               | 1244                                                     |                             |  |
| Diffractometer used                  | Siemens SMART Area-detector                              |                             |  |
| Radiation and wavelength             | MoK $\alpha$ with $\lambda$ =0.71073 Å                   | Å                           |  |
| Scan type                            | Hemisphere                                               |                             |  |
| Temperature                          | 193(2) K                                                 |                             |  |
| 2 $\theta$ range for data collection | 4.78 to 44.92°                                           |                             |  |
| Index ranges                         | $-9 \le h \le 9 \qquad -10 \le k \le 7$                  | $-18 \le l \le 18$          |  |
| Reflections collected                | 5761                                                     |                             |  |
| Independent reflections              | 1738 ( $R_{int} = 0.0324$ )                              |                             |  |
| Observed reflections                 | 1626 (F>4σ(F))                                           |                             |  |
| Absorption correction                | SADABS                                                   |                             |  |
| Max. and min. transmission           | 0.6945 and 0.4187                                        |                             |  |
| Even animental dataila               |                                                          |                             |  |

**Experimental details :** 

1200 frames measured in phi (0-360) with chi=0 and omega=2theta=25 65 frames measured in omega (15-35) with chi=280, 2thetha=29 and phi=0 Crystal mounted in perfluorpolyetheroil

## Table 32: Solution and refinement

| Structure solution program         | 'SHELXS-97 (Sheldrick, 1990)'               |
|------------------------------------|---------------------------------------------|
| Solution                           | direct methods                              |
| Refinement method                  | Full-matrix Least-Squares on F <sup>2</sup> |
| Hydrogen atoms                     | mixed                                       |
| Weighting scheme                   | $w^{-1} = \sigma^2 Fo^2 + (P)^2 + P$        |
|                                    | where $P=(Fo^2+2Fc^2)/3$                    |
| Data / restraints / parameters     | 1738 / 0 / 151                              |
| Data-to-parameter-ratio            | $11.5:1 (10.8:1 [F>4\sigma(F)])$            |
| Final R indices [F> $4\sigma(F)$ ] | R1 = 0.0376, $wR2 = 0.0920$                 |
| R indices (all data)               | R1 = 0.0398, $wR2 = 0.0940$                 |
| Goodness-of-Fit on F <sup>2</sup>  | 1.079                                       |
| Largest and mean $\Delta/\sigma$   | 0.000 0.000                                 |
| Largest difference peak            | 2.165 eÅ <sup>-3</sup>                      |
| Largest difference hole            | -2.562 eÅ <sup>-3</sup>                     |
| <b>Refinement details :</b>        |                                             |
| Program used                       | 'SHELXL-97 (Sheldrick, 1997)'               |
| CifRtf version used                | 2.0                                         |
|                                    |                                             |

Table 33: Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for d:. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|       | Х         | У        | Z          | U(eq)    |
|-------|-----------|----------|------------|----------|
| Cl(4) | 10436(3)  | 6848(3)  | -269.2(14) | 38.0(6)  |
| Cl(2) | 7044(2)   | 5677(2)  | 1314.0(12) | 27.8(5)  |
| Cl(1) | 11706(2)  | 5385(2)  | 1886.5(13) | 28.8(5)  |
| Cl(5) | 12597(3)  | 10361(3) | 257.6(14)  | 35.3(6)  |
| Cl(3) | 9848(3)   | 8939(3)  | 1611.1(12) | 32.4(6)  |
| N(3)  | 5144(9)   | 3092(9)  | 296(4)     | 34(2)    |
| N(2)  | 5927(11)  | 2286(11) | 831(6)     | 59(3)    |
| S(2)  | 3727(3)   | 3839(3)  | 600.3(13)  | 31.8(6)  |
| S(1)  | 4022(3)   | 3047(3)  | 1696.8(13) | 29.4(6)  |
| N(1)  | 5468(8)   | 2174(8)  | 1558(4)    | 31.0(19) |
| S(3)  | 13811(2)  | 7904(3)  | 1541.2(13) | 28.1(6)  |
| S(4)  | 14469(3)  | 6978(3)  | 2575.1(13) | 29.4(6)  |
| N(4)  | 15238(8)  | 8908(8)  | 1545(4)    | 30.9(19) |
| N(6)  | 15974(8)  | 7845(9)  | 2745(4)    | 33(2)    |
| N(5)  | 16241(11) | 8791(10) | 2178(6)    | 54(3)    |

| Hg(1)-Cl(2)         | 2.403(2)  | Hg(1)-Cl(4)        | 2.423(2)  |
|---------------------|-----------|--------------------|-----------|
| Hg(1)-Cl(1)         | 2.574(2)  | Hg(1)-Cl(3)        | 2.630(2)  |
| Hg(2)-Cl(5)         | 2.333(2)  | Hg(2)-Cl(5A)       | 2.333(2)  |
| Hg(2)-Cl(3)         | 2.953(2)  | Hg(2)-Cl(3A)       | 2.953(2)  |
| N(3)-N(2)           | 1.339(13) | N(3)-S(2)          | 1.577(9)  |
| N(2)-N(1)           | 1.350(12) | S(2)-S(1)          | 2.017(3)  |
| S(1)-N(1)           | 1.569(8)  | S(3)-N(4)          | 1.589(8)  |
| S(3)-S(4)           | 2.015(3)  | S(4)-N(6)          | 1.577(8)  |
| N(4)-N(5)           | 1.340(12) | N(6)-N(5)          | 1.364(13) |
|                     |           |                    |           |
| Cl(2)-Hg(1)-Cl(4)   | 130.49(8) | Cl(2)-Hg(1)-Cl(1)  | 113.91(7) |
| Cl(4)-Hg(1)-Cl(1)   | 106.53(8) | Cl(2)-Hg(1)-Cl(3)  | 104.97(8) |
| Cl(4)-Hg(1)-Cl(3)   | 99.74(8)  | Cl(1)-Hg(1)-Cl(3)  | 93.42(7)  |
| Cl(5)-Hg(2)-Cl(5A)  | 180.0     | Cl(5)-Hg(2)-Cl(3)  | 90.34(7)  |
| Cl(5A)-Hg(2)-Cl(3)  | 89.66(7)  | Cl(5)-Hg(2)-Cl(3A) | 89.66(7)  |
| Cl(5A)-Hg(2)-Cl(3A) | 90.34(7)  | Cl(3)-Hg(2)-Cl(3A) | 180.00(9) |
| Hg(1)-Cl(3)-Hg(2)   | 87.29(6)  | N(2)-N(3)-S(2)     | 114.5(7)  |
| N(3)-N(2)-N(1)      | 119.5(9)  | N(3)-S(2)-S(1)     | 95.7(3)   |
| N(1)-S(1)-S(2)      | 95.4(3)   | N(2)-N(1)-S(1)     | 114.8(7)  |
| N(4)-S(3)-S(4)      | 95.6(3)   | N(6)-S(4)-S(3)     | 95.8(3)   |
| N(5)-N(4)-S(3)      | 114.9(7)  | N(5)-N(6)-S(4)     | 114.8(6)  |
| N(4)-N(5)-N(6)      | 118.9(8)  |                    |           |
|                     |           |                    |           |

Table 34: Bond lengths [Å] and angles [°] for d:.

# Symmetry operations used for equivalent atoms : A: -x+2, -y+2, -z

|       | U11      | U22      | U33      | U23      | U13      | U12      |
|-------|----------|----------|----------|----------|----------|----------|
| Hg(1) | 23.5(3)  | 37.6(4)  | 28.3(3)  | 2.6(1)   | -2.0(1)  | -2.8(1)  |
| Hg(2) | 22.6(3)  | 27.4(4)  | 29.9(3)  | -0.1(2)  | -5.6(2)  | -1.3(2)  |
| Cl(4) | 53.9(16) | 30.2(16) | 31.8(12) | -3.9(11) | 14.3(11) | -3.8(12) |
| Cl(2) | 20.4(11) | 30.4(15) | 32.1(11) | -1.4(11) | -0.2(9)  | -2.4(10) |
| Cl(1) | 21.8(11) | 26.3(14) | 36.3(13) | 6.6(11)  | -7.8(9)  | -0.1(9)  |
| Cl(5) | 25.3(12) | 33.8(15) | 44.4(14) | 0.1(12)  | -9.0(10) | -4.0(10) |
| Cl(3) | 41.8(14) | 29.2(14) | 25.3(11) | -3.4(10) | -1.4(10) | -6.7(11) |
| N(3)  | 37(4)    | 46(6)    | 19(4)    | 2(4)     | -6(4)    | -4(4)    |
| N(2)  | 50(6)    | 63(8)    | 63(7)    | -12(6)   | 7(5)     | -15(5)   |
| S(2)  | 28.3(13) | 41.6(17) | 24.2(12) | 3.2(11)  | -4.1(10) | -2.9(11) |
| S(1)  | 29.2(13) | 35.5(15) | 23.2(11) | 0.4(11)  | 0.0(10)  | 1.2(11)  |
| N(1)  | 26(4)    | 29(5)    | 36(5)    | -5(4)    | -2(3)    | 4(3)     |
| S(3)  | 24.9(12) | 30.6(15) | 27.4(12) | 0.8(11)  | -5.9(9)  | 0.4(10)  |
| S(4)  | 27.2(12) | 31.9(15) | 27.9(12) | 2.7(11)  | -3.4(10) | 2.7(10)  |
| N(4)  | 32(5)    | 30(5)    | 30(4)    | 0(4)     | 0(4)     | 1(4)     |
| N(6)  | 28(4)    | 39(6)    | 30(4)    | -4(4)    | -7(3)    | 9(4)     |
| N(5)  | 49(6)    | 61(7)    | 52(6)    | -8(5)    | 4(5)     | -6(5)    |

Table 35: Anisotropic displacement parameters  $[Å^2 \times 10^3]$ 

10<sup>3</sup>) for d:.

Table 36: Hydrogen coordinates (  $x \ 10^4$  ) and isotropic displacement parameters (Å  $^2 x$ 

|       | Х         | У         | Z        | U(eq)   |
|-------|-----------|-----------|----------|---------|
| Hg(1) | 9493.4(4) | 6429.0(4) | 993.5(1) | 30.1(2) |
| Hg(2) | 10000     | 10000     | 0        | 27.1(2) |

<u>**Table 37**</u> Crystal Data and Data Collection Parameters:

| Compound                              | herl2                                                           |
|---------------------------------------|-----------------------------------------------------------------|
| Chem. formula                         | Cl <sub>10</sub> Hg <sub>3</sub> N <sub>12</sub> S <sub>8</sub> |
| Form. wght.                           | 1380.87                                                         |
| Cryst. Size [mm]                      | 0.01 x0.10 x1.00                                                |
| Cryst. system                         | Monoclinic                                                      |
| Space group                           | P2(1)/n                                                         |
| a, [Å]                                | 8.882(2)                                                        |
| b, [Å]                                | 9.564(2)                                                        |
| c, [Å]                                | 17.112(5)                                                       |
| α, [°]                                | 90                                                              |
| β, [°]                                | 95.421(4)                                                       |
| γ, [°]                                | 90                                                              |
| V, [Å <sup>3</sup> ]                  | 1447.1(7)                                                       |
| Ζ                                     | 2                                                               |
| $\rho$ (calcd.), [Mg/m <sup>3</sup> ] | 3.169                                                           |
| μ [mm <sup>-1</sup> ]                 | 17.397                                                          |
| F(000)                                | 1244                                                            |
| Index range                           | $-9 \le h \le 9 - 10 \le k \le 7 - 10$                          |
|                                       | $18 \le l \le 18$                                               |
| 2 θ [°]                               | 44.92                                                           |
| Temp, [K]                             | 193(2)                                                          |
| Refl. collected                       | 5761                                                            |
| Refl. unique                          | 1738                                                            |
| Refl. observed $(4\sigma)$            | 1626                                                            |
| R (int.)                              | 0.0324                                                          |
| No. variables                         | 151                                                             |
| Weighting scheme <sup>1</sup>         | 0.0753/                                                         |
| x/y                                   | 0.0000                                                          |
| GOOF                                  | 1.079                                                           |
| Final R (4 $\sigma$ )                 | 0.0376                                                          |
| Final wR2                             | 0.0920                                                          |
| Larg. res. peak [e/Å <sup>3</sup> ]   | 2.165                                                           |

<sup>1</sup> w<sup>-1</sup> = 
$$\sigma^2 F_0^2 + (xP)^2 + yP$$
; P =  $(F_0^2 + 2F_c^2)/3$ 

## 7.2. Kristallographische Daten $[S_2N_3]^+_2[Hg_2Cl_6]^{2-2}$

 $Summen formel: Cl_6\,Hg_2\,N_6\,S_4$ 

| Tab. 38 | Crystal data and data collection                                    |
|---------|---------------------------------------------------------------------|
| Tab. 39 | Solution and refinement                                             |
| Tab. 40 | Atomic coordinates and equivalent isotropic displacement parameters |
| Tab. 41 | Bond lengths and angles                                             |
| Tab. 42 | Anisotropic displacement parameters                                 |

### Table 38: Crystal data and data collection

| Empirical formula                            | $Cl_6 Hg_2 N_6 S_4$                 |                                 |  |  |  |
|----------------------------------------------|-------------------------------------|---------------------------------|--|--|--|
| Formula weight                               | 826.20                              | 826.20                          |  |  |  |
| Crystal size                                 | 0.20 x 0.04 x 0.035 m               | nm                              |  |  |  |
| Crystal color and habit                      | light yellow rod                    |                                 |  |  |  |
| Crystal system                               | triclinic                           |                                 |  |  |  |
| Space group                                  | $P\bar{1}$                          |                                 |  |  |  |
| Unit cell dimensions                         | a = 6.00860(10)  Å                  | $\alpha = 105.0320(11)^{\circ}$ |  |  |  |
|                                              | b = 8.2445(2) Å                     | $\beta = 99.2003(11)^{\circ}$   |  |  |  |
|                                              | c = 9.2830(2) Å                     | $\gamma = 106.4211(14)^{\circ}$ |  |  |  |
| Volume                                       | 412.289(15) Å <sup>3</sup>          |                                 |  |  |  |
| Z                                            | 1                                   |                                 |  |  |  |
| Density (calculated)                         | 3.328 Mg/m <sup>3</sup>             |                                 |  |  |  |
| Absorption coefficient                       | 20.062 mm <sup>-1</sup>             |                                 |  |  |  |
| F(000)                                       | 368                                 | 368                             |  |  |  |
| Diffractometer used                          | Nonius Kappa CCD                    |                                 |  |  |  |
| Radiation and wavelength                     | MoK $\alpha$ with $\lambda$ =0.7107 | /3 Å                            |  |  |  |
| Scan type                                    | Hemisphere                          |                                 |  |  |  |
| Temperature                                  | 200(2) K                            |                                 |  |  |  |
| $2 \theta$ range for data collection         | 2.55 to 27.49°                      |                                 |  |  |  |
| Index ranges                                 | $-7 \le h \le 7$ $-10 \le k \le 1$  | $10 -12 \le l \le 12$           |  |  |  |
| Reflections collected                        | 7569                                |                                 |  |  |  |
| Independent reflections                      | 1881 ( $R_{int} = 0.0581$ )         |                                 |  |  |  |
| Observed reflections                         | 177 (F>4σ(F))                       |                                 |  |  |  |
| Absorption correction                        | SADABS                              |                                 |  |  |  |
| Max. and min. transmission 0.1329 and 0.5646 |                                     |                                 |  |  |  |
| <b>T ( ) ) ( )</b>                           |                                     |                                 |  |  |  |

#### **Experimental details :**

1200 frames measured in phi (0-360) with chi=0 and omega=2theta=25 65 frames measured in omega (15-35) with chi=280, 2theta=29 and phi=0 Crystal mounted in perfluorpolyetheroil

## Table 39: Solution and refinement

| Structure solution program         | 'SHELXS-97 (Sheldrick, 1990)'               |  |
|------------------------------------|---------------------------------------------|--|
| Solution direct methods            |                                             |  |
| Refinement method                  | Full-matrix Least-Squares on F <sup>2</sup> |  |
| Hydrogen atoms                     | mixed                                       |  |
| Weighting scheme                   | $w^{-1} = \sigma^2 Fo^2 + (P)^2 + P$        |  |
|                                    | where $P=(Fo^2+2Fc^2)/3$                    |  |
| Data / restraints / parameters     | 1881 / 0 / 83                               |  |
| Data-to-parameter-ratio            | 11.5 : 1 (10.8 : 1 [F>4σ(F)])               |  |
| Final R indices [F> $4\sigma(F)$ ] | R1 = 0.0330, $wR2 = 0.0920$                 |  |
| R indices (all data)               | R1 = 0.0398, $wR2 = 0.0836$                 |  |
| Goodness-of-Fit on F <sup>2</sup>  | 1.073                                       |  |
| Largest and mean $\Delta/\sigma$   | 0.000 0.000                                 |  |
| Largest difference peak            | 1.957 eÅ <sup>-3</sup>                      |  |
| Largest difference hole            | -1.979 eÅ <sup>-3</sup>                     |  |
| <b>Refinement details :</b>        |                                             |  |
| Program used                       | 'SHELXL-97 (Sheldrick, 1997)'               |  |
| CifRtf version used                | 2.0                                         |  |

Table 40: Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for d:. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|              | Х        | у        | Z          | U(eq)    |
|--------------|----------|----------|------------|----------|
| Cl(2)        | 3296(3)  | 2891(3)  | 1483(2)    | 56.7(6)  |
| Cl(1)        | 4265(2)  | 2779(2)  | 3403.6(15) | 30.8(3)  |
| Cl(3)        | 1784(2)  | -1595(2) | -557.1(17) | 31.3(3)  |
| N(3)         | 1795(10) | 1164(8)  | 443.5(6)   | 35.2(12) |
| N(2)         | 429(12)  | 2673(10) | 4610(8)    | 49.4(16) |
| S(2)         | 3139(3)  | 1486(2)  | 3109.4(18) | 33.8(4)  |
| <b>S</b> (1) | -1880(3) | 4171(3)  | 2506(2)    | 35.7(4)  |
| N(1)         | -312(9)  | 4253(2)  | 3708(6)    | 34.8(12) |

 Table 41: Bond lengths [Å] and angles [°] for d:

| Hg(1)-Cl(2)       | 2.3693(17) | Hg(1)-Cl(3A)              | 2.8505(13) |
|-------------------|------------|---------------------------|------------|
| Hg(1)-Cl(1)       | 2.3662(13) | Hg(1)-Cl(3)               | 2.6290(15) |
| N(3)-N(2)         | 1.348(10)  | N(3)-S(2)                 | 1.583(5)   |
| N(2)-N(1)         | 1.329(9)   | S(2)-S(1)                 | 2.016(2)   |
| S(1)-N(1)         | 1.574(6)   |                           |            |
| Cl(2)-Hg(1)-Cl(1) | 144.40(7)  | Cl(1)-Hg(1)-Cl(3)         | 111.51(5)  |
| Cl(2)-Hg(1)-Cl(3) | 102.59(5)  | Hg(1)- $Cl(3)$ - $Hg(1A)$ | 92.11(4)   |
|                   |            |                           |            |
| N(2)-N(3)-S(2)    | 114.3(5)   | N(2)-N(1)-S(1)            | 114.9(5)   |
| N(3)-N(2)-N(1)    | 119.9(6)   | N(3)-S(2)-S(1)            | 95.3(2)    |
| N(1)-S(1)-S(2)    | 95.7(2)    |                           |            |
|                   |            |                           |            |

## Symmetry operations used for equivalent atoms :

A:-x, -y, -z

|              | U11     | U22       | U33       | U23      | U13      | U12       |
|--------------|---------|-----------|-----------|----------|----------|-----------|
| Hg(1)        | 43.0(2) | 43.8(2)   | 22.66(19) | 9.49(13) | 10.72(1) | 21.04(14) |
| Cl(1)        | 32.5(7) | 41.6(8)   | 20.1(6)   | 6.9(6)   | 7.1(5)   | -1.79(6)  |
| Cl(2)        | 42.3(9) | 109.3(18) | 55.3(11)  | 57.9(12) | 27.6(8)  | 44.1(11)  |
| Cl(3)        | 21.9(6) | 33.4(8)   | 34.9(8)   | 2.5(6)   | 6.5(5)   | 11.8(6)   |
| N(1)         | 31(3)   | 39(3)     | 38(3)     | 17(4)    | 11(2)    | 11(2)     |
| N(2)         | 46(4)   | 61(4)     | 52(4)     | 27(3)    | 15(3)    | 26(3)     |
| N(3)         | 43(3)   | 32(3)     | 31(3)     | 7(2)     | 15(2)    | 14(2)     |
| <b>S</b> (1) | 46.5(9) | 28.6(8)   | 36.3(9)   | 11.4(7)  | 18.5(7)  | 12.4(7)   |
| S(2)         | 41.8(8) | 28.1(8)   | 28.8(8)   | 8.3(6)   | 12.4(6)  | 6.8(7)    |

Table 42: Anisotropic displacement parameters  $[Å^2 x 10^3]$ 

| Compound                              | Fn111                                                         |
|---------------------------------------|---------------------------------------------------------------|
| Chem. formula                         | Cl <sub>6</sub> Hg <sub>2</sub> N <sub>6</sub> S <sub>4</sub> |
| Form. wght.                           | 826.2                                                         |
| Cryst. size [mm]                      | 0.20 x0.04 x0.035                                             |
| Cryst. system                         | Triclinic                                                     |
| Space group                           | PĪ                                                            |
| a, [Å]                                | 6.0086(1)                                                     |
| b, [Å]                                | 8.2445(2)                                                     |
| c, [Å]                                | 9.2830(2)                                                     |
| α, [°]                                | 105.0320 (11)                                                 |
| β, [°]                                | 99.2003(11)                                                   |
| γ, [°]                                | 106.4211 (14)                                                 |
| V, [Å <sup>3</sup> ]                  | 412.289(15)                                                   |
| Ζ                                     | 1                                                             |
| $\rho$ (calcd.), [Mg/m <sup>3</sup> ] | 3.32766(12)                                                   |
| μ [mm <sup>-1</sup> ]                 | 20.062                                                        |
| F(000)                                | 368                                                           |
| Index range                           | $-7 \le h \le 7 - 10 \le k \le 10$                            |
|                                       | $-12 \le l \le 12$                                            |
| 2 θ [°]                               | 24.94                                                         |
| Temp, [K]                             | 200(2)                                                        |
| Refl. collected                       | 7569                                                          |
| Refl. unique                          | 1881                                                          |
| Refl. observed $(4\sigma)$            | 177                                                           |
| R (int.)                              | 0.0581                                                        |
| No. variables                         | 151                                                           |
| GOOF                                  | 1.073                                                         |
| Final R (4o)                          | 0.0330                                                        |
| Final wR2                             | 0.0836                                                        |
| Larg. res. peak [e/Å <sup>3</sup> ]   | 1.957                                                         |

<u>**Table 43**</u> Crystal Data and Data Collection Parameters:

## 7.3. Kristallographische Daten $[S_4N_3]^+[FeCl_4]^-$

 $Summen formel: Cl_4 \ Fe \ N_3 \ S_4$ 

| Tab. 44 | Crystal data and data collection                                    |
|---------|---------------------------------------------------------------------|
| Tab. 45 | Solution and refinement                                             |
| Tab. 46 | Atomic coordinates and equivalent isotropic displacement parameters |
| Tab. 47 | Bond lengths and angles                                             |
| Tab. 48 | Anisotropic displacement parameters                                 |

#### Table 44: Crystal data and data collection Empirical formula Cl<sub>4</sub> Fe N<sub>3</sub> S<sub>4</sub> 367.92 Formula weight 0.30 x 0.28 x 0.12 mm Crystal size Crystal color and habit yellow platelet Crystal system Monoclinic P 21/m Space group a = 6.26120(10) Å Unit cell dimensions $\alpha = 90.00^{\circ}$ b = 14.4622(3) Å $\beta = 99.5685(9)^{\circ}$ $\gamma = 90.00^{\circ}$ c = 12.2074(3) Å 1090.01(4) Å<sup>3</sup> Volume Ζ 4 2.242 Mg/m<sup>3</sup> Density (calculated) 3.078 mm<sup>-1</sup> Absorption coefficient 716 F(000) CCD Diffractometer used MoK $\alpha$ $\Box$ with $\lambda$ =0.71073 Å Radiation and wavelength Temperature 200(2) K 3.38 to 54.92° $2\theta$ range for data collection Index ranges $-7 \le h \le 8$ $-18 \le k \le 18$ $-15 \le l \le 15$ 18205 Reflections collected 2589 ( $R_{int} = 0.0508$ ) Independent reflections Observed reflections 2198 (F>4σ(F)) Absorption correction numerical Max. and min. transmission 0.6859 and 0.4693 **Experimental details :**

Crystal embedded in oil and mounted with Lithelen

## Table 45: Solution and refinement

| Structure solution program           | SIR97                                       |
|--------------------------------------|---------------------------------------------|
| Solution                             | direct methods                              |
| Refinement method                    | Full-matrix Least-Squares on F <sup>2</sup> |
| Hydrogen atoms                       | none                                        |
| Weighting scheme                     | $w^{-1} = \sigma^2 F o^2 + (P)^2 + P$       |
|                                      | where $P = (Fo^2 + 2Fc^2)/3$                |
| Data / restraints / parameters       | 2589 / 0 / 118                              |
| Data-to-parameter-ratio              | 21.9:1 (18.6:1 [F>4o(F)])                   |
| Final R indices [F> $4\sigma(F)$ ]   | R1 = 0.0360, $wR2 = 0.0865$                 |
| R indices (all data)                 | R1 = 0.0456, $wR2 = 0.0930$                 |
| Goodness-of-Fit on F <sup>2</sup>    | 1.123                                       |
| Largest and mean $\Delta\!/\!\sigma$ | 0.000 0.000                                 |
| Largest difference peak              | 0.709 eÅ <sup>-3</sup>                      |
| Largest difference hole              | -0.663 eÅ <sup>-3</sup>                     |
| <b>Refinement details :</b>          |                                             |
| Program used SHELXL (Sheldrick       | 1997)                                       |
| CifRtf version used 2.0              |                                             |

Table 46: Atomic coordinates ( x 10<sup>4</sup> ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for fn153. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|              | Х           | У          | Z          | U(eq)   |
|--------------|-------------|------------|------------|---------|
| Fe(1)        | 4334.6(9)   | 2500       | -229.5(5)  | 24.9(1) |
| Cl(11)       | 2574.9(12)  | 1218.5(5)  | -834.1(6)  | 32.8(1) |
| Cl(21)       | 4691(2)     | 2500       | 1578.3(9)  | 42.5(3) |
| Cl(31)       | 7565.3(17)  | 2500       | -666.7(10) | 36.6(3) |
| Fe(2)        | 2423.0(9)   | 2500       | 4826.6(4)  | 22.3(1) |
| Cl(12)       | -1122.4(15) | 2500       | 4433.8(9)  | 30.3(2) |
| Cl(22)       | 3533.0(18)  | 2500       | 6625.5(8)  | 33.2(2) |
| Cl(32)       | 3622.5(12)  | 1222.2(5)  | 4142.6(6)  | 33.1(1) |
| <b>S</b> (1) | 2729.8(13)  | 4952.8(5)  | 1453.6(6)  | 34.4(2) |
| S(2)         | 134.2(14)   | 4048.1(5)  | 1409.9(7)  | 39.0(2) |
| N(1)         | -1297(4)    | 4225.6(19) | 2310(2)    | 37.4(6) |
| S(3)         | -1644.6(12) | 4805.3(6)  | 3357.1(7)  | 36.8(2) |
| N(2)         | -39(4)      | 5610.7(17) | 3751(2)    | 31.8(6) |
| S(4)         | 2033.9(12)  | 6079.9(5)  | 3422.9(6)  | 31.6(1) |
| N(3)         | 2960(4)     | 5666.7(16) | 2402(2)    | 28.6(5) |
|              |             |            |            |         |

Table 47: Bond lengths [Å] and angles [°] for fn153 .

| Fe(1)-Cl(31)         | 2.1761(12)  | Fe(1)-Cl(21)                | 2.1809(12) |
|----------------------|-------------|-----------------------------|------------|
| Fe(1)-Cl(11)         | 2.2188(7)   | Fe(1)-Cl(11A)               | 2.2188(7)  |
| Fe(2)-Cl(22)         | 2.1904(11)  | Fe(2)-Cl(12)                | 2.1918(11) |
| Fe(2)-Cl(32A)        | 2.2101(7)   | Fe(2)-Cl(32)                | 2.2101(7)  |
| S(1)-N(3)            | 1.540(2)    | S(1)-S(2)                   | 2.0802(12) |
| S(2)-N(1)            | 1.550(3)    | N(1)-S(3)                   | 1.574(3)   |
| S(3)-N(2)            | 1.562(3)    | N(2)-S(4)                   | 1.574(3)   |
| S(4)-N(3)            | 1.577(3)    |                             |            |
|                      |             |                             |            |
| Cl(31)-Fe(1)-Cl(21)  | 107.77(5)   | Cl(31)-Fe(1)-Cl(11)         | 110.42(3)  |
| Cl(21)-Fe(1)-Cl(11)  | 107.35(3)   | Cl(31)-Fe(1)-Cl(11A)        | 110.42(3)  |
| Cl(21)-Fe(1)-Cl(11A) | ) 107.35(3) | Cl(11)-Fe(1)-Cl(11A)        | 113.29(5)  |
| Cl(22)-Fe(2)-Cl(12)  | 111.12(5)   | Cl(22)- $Fe(2)$ - $Cl(32A)$ | 107.92(3)  |
| Cl(12)-Fe(2)-Cl(32A) | ) 108.23(3) | Cl(22)-Fe(2)-Cl(32)         | 107.92(3)  |
| Cl(12)-Fe(2)-Cl(32)  | 108.23(3)   | Cl(32A)-Fe(2)-Cl(32)        | 113.47(5)  |
| N(3)-S(1)-S(2)       | 114.58(10)  | N(1)-S(2)-S(1)              | 114.76(11) |
| S(2)-N(1)-S(3)       | 146.95(18)  | N(2)-S(3)-N(1)              | 118.61(14) |
| S(3)-N(2)-S(4)       | 139.36(17)  | N(2)-S(4)-N(3)              | 117.71(13) |
| S(1)-N(3)-S(4)       | 147.94(17)  |                             |            |
|                      |             |                             |            |

### Symmetry operations used for equivalent atoms :

A : x, -y+1/2, z

|              | U11      | U22      | U33      | U23      | U13      | U12      |
|--------------|----------|----------|----------|----------|----------|----------|
| Fe(1)        | 26.5(3)  | 19.4(3)  | 28.3(3)  | 0        | 3.4(2)   | 0        |
| Cl(11)       | 37.3(4)  | 25.2(4)  | 36.1(4)  | -3.3(3)  | 6.9(3)   | -7.7(3)  |
| Cl(21)       | 61.2(8)  | 35.9(6)  | 28.5(6)  | 0        | 1.7(5)   | 0        |
| Cl(31)       | 25.1(5)  | 34.9(6)  | 49.7(6)  | 0        | 5.7(4)   | 0        |
| Fe(2)        | 23.1(3)  | 19.3(3)  | 23.9(3)  | 0        | 2.3(2)   | 0        |
| Cl(12)       | 22.8(5)  | 27.1(5)  | 40.1(6)  | 0        | 2.7(4)   | 0        |
| Cl(22)       | 40.0(6)  | 33.5(5)  | 24.5(5)  | 0        | 0.2(4)   | 0        |
| Cl(32)       | 29.8(4)  | 28.1(4)  | 41.4(4)  | -10.1(3) | 6.0(3)   | 2.8(3)   |
| <b>S</b> (1) | 36.4(4)  | 33.3(4)  | 33.7(4)  | -5.6(3)  | 6.6(3)   | 0.1(3)   |
| S(2)         | 40.0(5)  | 28.9(4)  | 44.5(5)  | -6.4(3)  | -3.6(4)  | -2.3(3)  |
| N(1)         | 31.1(13) | 31.0(14) | 45.9(16) | 11.9(12) | -6.1(12) | -4.0(11) |
| S(3)         | 27.6(4)  | 38.8(4)  | 44.3(5)  | 9.2(3)   | 7.3(3)   | -2.8(3)  |
| N(2)         | 32.3(13) | 31.4(14) | 32.7(13) | 1.3(11)  | 8.8(10)  | 4.8(11)  |
| S(4)         | 35.1(4)  | 27.0(4)  | 33.5(4)  | -5.4(3)  | 8.2(3)   | -5.3(3)  |
| N(3)         | 33.7(13) | 21.5(12) | 30.1(13) | 0.1(10)  | 3.4(10)  | -1.8(10) |

Table 48: Anisotropic displacement parameters  $[Å^2 \ge 10^3]$ 

| Compound                              |                                                             |
|---------------------------------------|-------------------------------------------------------------|
| Chem. formula                         | Cl <sub>4</sub> Fe N <sub>3</sub> S <sub>4</sub>            |
| Form. wght.                           | 367.92                                                      |
| Cryst. size [mm]                      | 0.12 x 0.28 x 0.30                                          |
| Cryst. system                         | Monoclinic                                                  |
| Space group                           | <i>P</i> 21/ <i>m</i>                                       |
| a, [Å]                                | 6.26120(10)                                                 |
| b, [Å]                                | 14.4622(3)                                                  |
| c, [Å]                                | 12.2074(3)                                                  |
| α, [°]                                | 90.00                                                       |
| β, [°]                                | 99.5685(9)                                                  |
| γ, [°]                                | 90.00                                                       |
| V, [Å <sup>3</sup> ]                  | 1090.01(4)                                                  |
| Ζ                                     | 4                                                           |
| $\rho$ (calcd.), [Mg/m <sup>3</sup> ] | 2.242                                                       |
| μ[mm <sup>-1</sup> ]                  | 3.078                                                       |
| F(000)                                | 716                                                         |
| Index range                           | $-7 \le h \le 8$ $-18 \le \Box k \le 18$ $-15 \le l \le 15$ |
| 2θ[°]                                 | 54.92                                                       |
| Temp, [K]                             | 200(2)                                                      |
| Refl. collected                       | 18205                                                       |
| Refl. unique                          | 2589                                                        |
| Refl. observed $(4\sigma)$            | 2198                                                        |
| R (int.)                              | 0.0508                                                      |
| No. variables                         | 118                                                         |
| GOOF                                  | 1.123                                                       |
| Final R ( $4\sigma$ )                 | 0.0360                                                      |
| Final wR2                             | 0.0865                                                      |
| Larg. res. peak [e/Å <sup>3</sup> ]   | 0.709                                                       |

<u>**Table 49**</u> Crystal Data and Data Collection Parameters:

## 7.4. Kristallographische Daten [Ph<sub>4</sub>P]<sup>+</sup><sub>2</sub>[Cu<sub>2</sub>Cl<sub>6</sub>]<sup>2-</sup>

Summenformel :  $C_{12} H_{10} Cl_{1.50} Cu_{0.50} P_{0.50}$ 

Autoren : Heinrich Nöth, A. Schulz, S. Herler, M. Suter

Journal : ?

| Tab. 50 | Crystal data and data collection                                    |
|---------|---------------------------------------------------------------------|
| Tab. 51 | Solution and refinement                                             |
| Tab. 52 | Atomic coordinates and equivalent isotropic displacement parameters |
| Tab. 53 | Bond lengths and angles                                             |
| Tab. 54 | Anisotropic displacement parameters                                 |
| Tab. 55 | Hydrogen coordinates and isotropic displacement parameters          |

## Table 50 Crystal data and data collection

| Empirical formula            | $C_{12} H_{10} Cl_{1.50} Cu_{0.50} P_0$    | 0.50                     |  |
|------------------------------|--------------------------------------------|--------------------------|--|
| Formula weight               | 254.63                                     |                          |  |
| Crystal size                 | 0.40 x 0.40 x 0.30 mm                      |                          |  |
| Crystal color and habit      | red prism                                  |                          |  |
| Crystal system               | Monoclinic                                 |                          |  |
| Space group                  | <i>P</i> 2(1)/ <i>n</i>                    |                          |  |
| Unit cell dimensions         | a = 9.1639(9)  Å                           | $\alpha = 90^{\circ}$    |  |
|                              | b = 19.275(2) Å                            | $\beta=108.018(2)^\circ$ |  |
|                              | c = 13.411(1)  Å                           | $\gamma=90^\circ$        |  |
| Volume                       | 2252.7(4) Å <sup>3</sup>                   |                          |  |
| Ζ                            | 8                                          |                          |  |
| Density (calculated)         | 1.502 Mg/m <sup>3</sup>                    |                          |  |
| Absorption coefficient       | 1.405 mm <sup>-1</sup>                     |                          |  |
| F(000)                       | 1036                                       |                          |  |
| Diffractometer used          | Siemens SMART Area-detector                |                          |  |
| Radiation and wavelength     | MoK $\alpha$ with $\lambda$ =0.71073 Å     |                          |  |
| Scan type                    | Hemisphere                                 |                          |  |
| Temperature                  | 193(2) K                                   |                          |  |
| 2θ range for data collection | 3.82 to 58.50°                             |                          |  |
| Index ranges                 | $-11 \le h \le 11 \qquad -24 \le k \le 24$ | $-17 \le l \le 16$       |  |
| Reflections collected        | 12855                                      |                          |  |
| Independent reflections      | 4467 ( $R_{int} = 0.0310$ )                |                          |  |
| Observed reflections         | 3490 (F>4σ(F))                             |                          |  |
| Absorption correction        | SADABS                                     |                          |  |
| Max. and min. transmission   | 0.5339 and 0.4368                          |                          |  |
| Experimental details :       |                                            |                          |  |

1200 frames measured in phi (0-360) with chi=0 and omega=2theta=25 65 frames measured in omega (15-35) with chi=280, 2theta=29 and phi=0 Crystal mounted in perfluorpolyetheroil

## Table 51 Solution and refinement

| 'SHELXS-97 (Sheldrick, 1990)'         |
|---------------------------------------|
| direct methods                        |
| Full-matrix Least-Squares on $F^2$    |
| mixed                                 |
| $w^{-1} = \sigma^2 F o^2 + (P)^2 + P$ |
| where $P = (Fo^2 + 2Fc^2)/3$          |
| 4467 / 0 / 262                        |
| 17.0 : 1 (13.3 : 1 [F>4σ(F)])         |
| R1 = 0.0318, $wR2 = 0.0750$           |
| R1 = 0.0478, $wR2 = 0.0805$           |
| 1.019                                 |
| 0.001 0.000                           |
| 0.304 eÅ <sup>-3</sup>                |
| -0.421 eÅ <sup>-3</sup>               |
|                                       |
| 'SHELXL-97 (Sheldrick, 1997)'         |
| 2.0                                   |
|                                       |

Table 52: Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x  $10^3$ ) for d:. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|       | Х         | У           | Z           | U(eq)   |
|-------|-----------|-------------|-------------|---------|
| Cu(1) | 4790.5(3) | 465.6(1)    | 6005.8(2)   | 31.3(1) |
| Cl(1) | 3220.4(6) | 52.3(3)     | 4401.0(5)   | 37.4(1) |
| Cl(2) | 5620.6(8) | 265.1(3)    | 7710.9(5)   | 40.9(1) |
| Cl(3) | 3588.7(8) | 1449.2(4)   | 5968.2(6)   | 49.0(1) |
| P(1)  | 6584.6(6) | -2061.7(3)  | 9807.2(5)   | 27.3(1) |
| C(1)  | 7919(3)   | -1491.8(12) | 10695.5(19) | 30.8(5) |
| C(2)  | 9118(3)   | -1184.3(14) | 10435(2)    | 41.4(6) |
| C(3)  | 10145(3)  | -762.2(16)  | 11165(3)    | 52.1(8) |
| C(4)  | 9980(3)   | -648.8(15)  | 12127(2)    | 50.3(8) |
| C(5)  | 8801(3)   | -958.8(14)  | 12402(2)    | 45.9(7) |
| C(6)  | 7756(3)   | -1379.8(13) | 11684(2)    | 37.4(6) |
| C(7)  | 6671(3)   | -2885.7(12) | 10440.7(18) | 28.8(5) |
| C(8)  | 8118(3)   | -3154.3(13) | 10970(2)    | 35.6(6) |
| C(9)  | 8257(3)   | -3806.5(13) | 11402(2)    | 38.8(6) |
| C(10) | 6967(3)   | -4199.0(13) | 11318(2)    | 39.3(6) |
| C(11) | 5521(3)   | -3940.1(14) | 10795(2)    | 41.1(6) |
| C(12) | 5377(3)   | -3281.6(13) | 10362(2)    | 33.8(6) |
| C(13) | 4687(3)   | -1694.4(12) | 9443.3(19)  | 29.4(5) |
| C(14) | 4406(3)   | -1057.6(14) | 9828(2)     | 40.5(6) |
| C(15) | 2938(3)   | -782.3(16)  | 9496(2)     | 49.5(7) |
| C(16) | 1757(3)   | -1145.4(16) | 8806(2)     | 45.1(7) |
| C(17) | 2019(3)   | -1784.3(15) | 8433(2)     | 43.1(7) |
| C(18) | 3489(3)   | -2054.9(13) | 8729(2)     | 36.4(6) |
| C(19) | 7082(2)   | -2188.7(12) | 8623.0(19)  | 28.5(5) |
| C(20) | 7013(3)   | -1620.6(13) | 7961(2)     | 34.8(6) |
| C(21) | 7310(3)   | -1721.9(15) | 7021(2)     | 42.0(6) |
| C(22) | 7671(3)   | -2370.1(15) | 6740(2)     | 44.5(7) |
| C(23) | 7765(3)   | -2928.5(15) | 7395(2)     | 45.3(7) |
| C(24) | 7465(3)   | -2836.5(13) | 8344(2)     | 37.7(6) |

| Cu(1)-Cl(3)        | 2.1854(7)  | Cu(1)-Cl(2)        | 2.2094(7)  |
|--------------------|------------|--------------------|------------|
| Cu(1)- $Cl(1A)$    | 2.2873(6)  | Cu(1)- $Cl(1)$     | 2.3283(7)  |
| Cl(1)- $Cu(1A)$    | 2.2873(6)  | P(1)-C(7)          | 1.792(2)   |
| P(1)-C(1)          | 1.794(2)   | P(1)-C(13)         | 1.799(2)   |
| P(1)-C(19)         | 1.799(2)   | C(1)-C(2)          | 1.385(3)   |
| C(1)-C(6)          | 1.395(4)   | C(2)-C(3)          | 1.391(4)   |
| C(3)-C(4)          | 1.363(4)   | C(4)-C(5)          | 1.380(4)   |
| C(5)-C(6)          | 1.390(4)   | C(7)-C(12)         | 1.386(3)   |
| C(7)-C(8)          | 1.396(3)   | C(8)-C(9)          | 1.374(3)   |
| C(9)-C(10)         | 1.378(4)   | C(10)-C(11)        | 1.386(4)   |
| C(11)-C(12)        | 1.385(3)   | C(13)-C(14)        | 1.386(3)   |
| C(13)-C(18)        | 1.399(3)   | C(14)-C(15)        | 1.386(4)   |
| C(15)-C(16)        | 1.377(4)   | C(16)-C(17)        | 1.378(4)   |
| C(17)-C(18)        | 1.383(3)   | C(19)-C(24)        | 1.379(3)   |
| C(19)-C(20)        | 1.399(3)   | C(20)-C(21)        | 1.383(4)   |
| C(21)-C(22)        | 1.375(4)   | C(22)-C(23)        | 1.375(4)   |
| C(23)-C(24)        | 1.394(4)   |                    |            |
| Cl(3)-Cu(1)-Cl(2)  | 100.68(3)  | Cl(3)-Cu(1)-Cl(1A) | 143.73(3)  |
| Cl(2)-Cu(1)-Cl(1A) | 97.23(3)   | Cl(3)-Cu(1)-Cl(1)  | 96.47(3)   |
| Cl(2)-Cu(1)-Cl(1)  | 144.43(3)  | Cl(1A)-Cu(1)-Cl(1) | 86.59(2)   |
| Cu(1A)-Cl(1)-Cu(1) | 93.41(2)   | C(7)-P(1)-C(1)     | 107.87(11) |
| C(7)-P(1)-C(13)    | 112.00(11) | C(1)-P(1)-C(13)    | 110.00(11) |
| C(7)-P(1)-C(19)    | 108.17(11) | C(1)-P(1)-C(19)    | 111.27(11) |
| C(13)-P(1)-C(19)   | 107.55(11) | C(2)-C(1)-C(6)     | 120.0(2)   |
| C(2)-C(1)-P(1)     | 121.7(2)   | C(6)-C(1)-P(1)     | 118.32(18) |
| C(1)-C(2)-C(3)     | 119.3(3)   | C(4)-C(3)-C(2)     | 120.7(3)   |
| C(3)-C(4)-C(5)     | 120.6(3)   | C(4)-C(5)-C(6)     | 119.7(3)   |
| C(5)-C(6)-C(1)     | 119.7(2)   | C(12)-C(7)-C(8)    | 119.4(2)   |
| C(12)-C(7)-P(1)    | 122.72(18) | C(8)-C(7)-P(1)     | 117.74(18) |
| C(9)-C(8)-C(7)     | 120.2(2)   | C(8)-C(9)-C(10)    | 120.2(2)   |
| C(9)-C(10)-C(11)   | 120.3(2)   | C(12)-C(11)-C(10)  | 119.6(2)   |
| C(11)-C(12)-C(7)   | 120.3(2)   | C(14)-C(13)-C(18)  | 119.9(2)   |
| C(14)-C(13)-P(1)   | 121.52(19) | C(18)-C(13)-P(1)   | 118.58(18) |
| C(13)-C(14)-C(15)  | 119.6(3)   | C(16)-C(15)-C(14)  | 120.3(3)   |
| C(15)-C(16)-C(17)  | 120.6(2)   | C(16)-C(17)-C(18)  | 119.7(3)   |
| C(17)-C(18)-C(13)  | 119.9(2)   | C(24)-C(19)-C(20)  | 120.1(2)   |
| C(24)-C(19)-P(1)   | 121.16(19) | C(20)-C(19)-P(1)   | 118.67(18) |
| C(21)-C(20)-C(19)  | 119.0(2)   | C(22)-C(21)-C(20)  | 120.7(2)   |
| C(21)-C(22)-C(23)  | 120.6(2)   | C(22)-C(23)-C(24)  | 119.5(3)   |
| C(19)-C(24)-C(23)  | 120.1(2)   |                    |            |

 Table 53: Bond lengths [Å] and angles [°] for d:.

## Symmetry operations used for equivalent atoms : A: -x+1, -y, -z+1

|       |          | 1122     | 1133     |           | U13      |           |
|-------|----------|----------|----------|-----------|----------|-----------|
|       | 011      | 022      | 035      | 023       | 015      | 012       |
| Cu(1) | 29.4(1)  | 33.1(1)  | 29.7(1)  | -1.0(1)   | 6.9(1)   | 3.5(1)    |
| Cl(1) | 27.5(3)  | 46.9(4)  | 34.0(4)  | -6.1(3)   | 4.0(3)   | 6.1(3)    |
| Cl(2) | 51.6(4)  | 37.9(4)  | 29.5(4)  | -2.7(3)   | 7.1(3)   | -4.7(3)   |
| Cl(3) | 45.7(4)  | 45.2(4)  | 50.4(5)  | -7.9(3)   | 6.4(3)   | 17.3(3)   |
| P(1)  | 24.0(3)  | 27.1(3)  | 29.9(4)  | -0.1(3)   | 7.2(3)   | -0.1(2)   |
| C(1)  | 26.8(12) | 28.7(13) | 32.5(14) | -1.0(10)  | 2.7(10)  | 1.4(9)    |
| C(2)  | 33.2(13) | 49.2(17) | 40.3(17) | -5.1(13)  | 9.1(12)  | -7.0(12)  |
| C(3)  | 35.5(15) | 58(2)    | 58(2)    | -5.7(15)  | 7.5(14)  | -16.1(13) |
| C(4)  | 41.5(16) | 43.1(17) | 52(2)    | -10.3(14) | -5.9(14) | -3.3(13)  |
| C(5)  | 51.2(16) | 43.8(17) | 34.2(16) | -4.3(12)  | 0.6(13)  | 6.8(13)   |
| C(6)  | 36.6(13) | 35.9(15) | 38.0(16) | -2.9(11)  | 8.8(12)  | 0.9(11)   |
| C(7)  | 28.7(12) | 31.4(13) | 26.3(13) | 0.7(10)   | 8.2(10)  | 0.8(10)   |
| C(8)  | 29.9(12) | 34.4(14) | 40.9(16) | 2.1(11)   | 8.4(11)  | -1.6(10)  |
| C(9)  | 37.6(14) | 33.8(14) | 40.1(16) | 1.0(12)   | 5.0(12)  | 5.2(11)   |
| C(10) | 51.0(16) | 29.1(14) | 40.1(16) | 4.1(11)   | 17.3(13) | 0.8(12)   |
| C(11) | 39.5(14) | 39.1(16) | 47.0(17) | 2.6(13)   | 16.9(13) | -7.3(12)  |
| C(12) | 27.8(12) | 38.7(15) | 34.7(15) | 1.4(11)   | 9.5(11)  | -0.9(10)  |
| C(13) | 25.4(11) | 32.2(13) | 30.3(14) | 2.6(10)   | 8.1(10)  | 1.5(9)    |
| C(14) | 33.0(13) | 42.2(16) | 44.0(17) | -5.1(12)  | 8.6(12)  | 3.6(11)   |
| C(15) | 42.0(15) | 51.1(18) | 56(2)    | -5.3(14)  | 15.4(14) | 16.0(13)  |
| C(16) | 31.7(13) | 62.4(19) | 43.7(17) | 11.8(14)  | 15.3(13) | 12.2(13)  |
| C(17) | 30.2(13) | 53.3(18) | 40.2(17) | 11.1(13)  | 3.0(12)  | -4.1(12)  |
| C(18) | 35.0(13) | 35.6(15) | 35.0(15) | 2.2(11)   | 5.6(11)  | 0.9(11)   |
| C(19) | 23.8(11) | 31.6(13) | 29.2(13) | 1.5(10)   | 7.0(10)  | -0.2(9)   |
| C(20) | 31.5(12) | 31.6(14) | 38.9(16) | 3.7(11)   | 7.4(11)  | 2.3(10)   |
| C(21) | 42.2(15) | 45.9(17) | 37.8(16) | 14.8(12)  | 12.3(13) | 2.8(12)   |
| C(22) | 41.8(15) | 61.4(19) | 33.1(16) | 5.1(13)   | 15.7(13) | 3.6(13)   |
| C(23) | 49.7(16) | 45.0(17) | 46.6(18) | -4.4(13)  | 22.7(14) | 8.6(13)   |
| C(24) | 43.3(14) | 32.0(14) | 40.5(16) | 3.6(11)   | 16.8(12) | 5.1(11)   |
|       |          |          |          |           |          |           |

Table 54: Anisotropic displacement parameters  $[Å^2 \ge 10^3]$ 

|        | Х     | У     | Z     | U(eq) |
|--------|-------|-------|-------|-------|
| H(2A)  | 9238  | -1261 | 9765  | 50    |
| H(3A)  | 10971 | -551  | 10990 | 62    |
| H(4A)  | 10682 | -354  | 12613 | 60    |
| H(5A)  | 8705  | -885  | 13079 | 55    |
| H(6A)  | 6935  | -1590 | 11865 | 45    |
| H(8A)  | 9010  | -2885 | 11031 | 43    |
| H(9A)  | 9244  | -3988 | 11760 | 47    |
| H(10A) | 7069  | -4649 | 11621 | 47    |
| H(11A) | 4634  | -4213 | 10733 | 49    |
| H(12A) | 4388  | -3100 | 10009 | 41    |
| H(14A) | 5215  | -811  | 10315 | 49    |
| H(15A) | 2744  | -341  | 9745  | 59    |
| H(16A) | 753   | -954  | 8586  | 54    |
| H(17A) | 1193  | -2038 | 7974  | 52    |
| H(18A) | 3684  | -2485 | 8447  | 44    |
| H(20A) | 6765  | -1172 | 8153  | 42    |
| H(21A) | 7265  | -1340 | 6565  | 50    |
| H(22A) | 7857  | -2433 | 6087  | 53    |
| H(23A) | 8033  | -3374 | 7203  | 54    |
| H(24A) | 7523  | -3220 | 8799  | 45    |

Table 55: Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2\;x\;10^3)$  for d:.

| Compound                              |                                              |
|---------------------------------------|----------------------------------------------|
| Chem. formula                         | $C_{12} H_{10} Cl_{1.50} Cu_{0.50} P_{0.50}$ |
| Form. wght.                           | 254.63                                       |
| Cryst. size [mm]                      | 0.30 x0.40 x0.40                             |
| Cryst. system                         | Monoclinic                                   |
| Space group                           | P2(1)/n                                      |
| a, [Å]                                | 9.1639(9)                                    |
| b, [Å]                                | 19.275(2)                                    |
| c, [Å]                                | 13.411(1)                                    |
| α, [°]                                | 90                                           |
| β, [°]                                | 108.018(2)                                   |
| γ, [°]                                | 90                                           |
| V, [Å <sup>3</sup> ]                  | 2252.7(4)                                    |
| Ζ                                     | 8                                            |
| $\rho$ (calcd.), [Mg/m <sup>3</sup> ] | 1.502                                        |
| μ [mm <sup>-1</sup> ]                 | 1.405                                        |
| F(000)                                | 1036                                         |
| Index range                           | $-11 \leq h \leq 11  -24 \leq k \leq 24$     |
|                                       | $-17 \le l \le 16$                           |
| 2 θ [°]                               | 58.50                                        |
| Temp, [K]                             | 193(2)                                       |
| Refl. collected                       | 12855                                        |
| Refl. unique                          | 4467                                         |
| Refl. observed $(4\sigma)$            | 3490                                         |
| R (int.)                              | 0.0310                                       |
| No. variables                         | 262                                          |
| Weighting scheme <sup>1</sup>         | 0.0412/                                      |
| x/y                                   | 0.6537                                       |
| GOOF                                  | 1.019                                        |
| Final R (4o)                          | 0.0318                                       |
| Final wR2                             | 0.0750                                       |
| Larg. res. peak [e/Å <sup>3</sup> ]   | 0.304                                        |

<u>**Table 56**</u> Crystal Data and Data Collection Parameters:

1 w-1 = 
$$\sigma^2 F_0^2 + (xP)^2 + yP$$
; P =  $(F_0^2 + 2F_c^2)/3$ 

## 7.5. Kristallographische Daten [Ph<sub>4</sub>P]<sup>+</sup><sub>2</sub>[HgCl<sub>4</sub>]<sup>2-</sup>

## Summenformel : C50 H42 Cl10 Hg P2

| Tab. 57 | Crystal data and data collection                                    |
|---------|---------------------------------------------------------------------|
| Tab. 58 | Solution and refinement                                             |
| Tab. 59 | Atomic coordinates and equivalent isotropic displacement parameters |
| Tab. 60 | Bond lengths and angles                                             |

#### Table 57: Crystal data and data collection

| Empirical formula                     | $C_{50}  H_{42}  Cl_{10}  Hg  P_2$         |                              |
|---------------------------------------|--------------------------------------------|------------------------------|
| Formula weight                        | 1259.93                                    |                              |
| Crystal size                          | 0.42 x 0.30 x 0.28 mm                      |                              |
| Crystal color and habit               | colorless block                            |                              |
| Crystal system                        | Monoclinic                                 |                              |
| Space group                           | P 21/m                                     |                              |
| Unit cell dimensions                  | a = 13.28230(10) Å                         | $\alpha = 90.00^{\circ}$     |
|                                       | b = 19.32390(10) Å                         | $\beta = 92.5638(2)^{\circ}$ |
|                                       | c = 20.4663(2) Å                           | $\gamma=90.00~^\circ$        |
| Volume                                | 5247.74(7) Å <sup>3</sup>                  |                              |
| Z                                     | 4                                          |                              |
| Density (calculated)                  | 1.5947 Mg/m <sup>3</sup>                   |                              |
| Absorption coefficient                | 3.537 mm <sup>-1</sup>                     |                              |
| F(000)                                | 2488                                       |                              |
| Diffractometer used                   | CCD                                        |                              |
| Radiation and wavelength              | MoKa with $\lambda$ =0.71073 Å             |                              |
| Temperature                           | 200(2) K                                   |                              |
| 2θ range for data collection          | 1.45 to 23.99°                             |                              |
| Index ranges                          | $-15 \le h \le 15 \qquad -22 \le k \le 21$ | $-23 \le l \le 23$           |
| Reflections collected                 | 8235                                       |                              |
| Independent reflections               | 2198 ( $R_{int} = 0.0508$ )                |                              |
| Observed reflections                  | 2589 (F>4σ(F))                             |                              |
| Absorption correction                 | numerical                                  |                              |
| Max. and min. transmission            | 0.6859 and 0.4693                          |                              |
| Experimental details :                |                                            |                              |
| Crystal embedded in oil and mounted w | with Lithelen                              |                              |

## Table 58 Solution and refinement

| Structure solution program           | SIR97                                       |
|--------------------------------------|---------------------------------------------|
| Solution                             | direct methods                              |
| Refinement method                    | Full-matrix Least-Squares on F <sup>2</sup> |
| Hydrogen atoms                       | none                                        |
| Weighting scheme                     | $w^{-1} = \sigma^2 F o^2 + (P)^2 + P$       |
|                                      | where $P=(Fo^2+2Fc^2)/3$                    |
| Data / restraints / parameters       | 2198 / 2 / 567                              |
| Data-to-parameter-ratio              | $21.9:1$ (18.6:1 [F>4 $\sigma$ (F)])        |
| Final R indices [F> $4\sigma(F)$ ]   | R1 = 0.0426, $wR2 = 0.1177$                 |
| R indices (all data)                 | R1 = 0.0551, $wR2 = 0.1422$                 |
| Goodness-of-Fit on F <sup>2</sup>    | 1.147                                       |
| Largest and mean $\Delta\!/\!\sigma$ | 0.000 0.000                                 |
| Largest difference peak              | 1.624eÅ <sup>-3</sup>                       |
| Largest difference hole              | -2.159 eÅ <sup>-3</sup>                     |
| <b>Refinement details :</b>          |                                             |
| Program used SHELXL (Sheldrick       | 1997)                                       |
| CifRtf version used 2.0              |                                             |

| U(eq)     | Z           | У           | Х           |       |
|-----------|-------------|-------------|-------------|-------|
| 37.96(12) | 2650.25(12) | 5127.78(13) | 9539.03(17) | Hg(1) |
| 47.9(4)   | 1502.3(8)   | 4681.8(9)   | 9526.1(14)  | Cl(1) |
| 7.06(6)   | 3189.5(12)  | 4945.3(13)  | 7912.8(15)  | Cl(2) |
| 38.7(3)   | 2584.1(7)   | 6401.2(8)   | 9872.6(12)  | Cl(3) |
| 59.2(5)   | 3263.5(10)  | 4568.6(10)  | 10959.8(14) | Cl(4) |
| 33.0(3)   | -582.6(8)   | 2958.3(8)   | 5416.5(11)  | P(1)  |

Table 59: Selected Atomic coordinates ( x 10<sup>4</sup> ) and equivalent isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for fn045. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

Table 60: Selected Bond lengths  $[{\rm \AA}]$  and angles  $[^\circ]$  for fn045 .

| Hg(1)- $Cl(4)$   | 2.4682(16) | Hg(1)-Cl(2)      | 2.4942(18) |
|------------------|------------|------------------|------------|
| Hg(1)- $Cl(1)$   | 2.5019(17) | Hg(1)-Cl(3)      | 2.5051(15) |
| P(1)-C(1A)       | 1.785(6)   | P(1)-C(1B)       | 1.788(6)   |
| P(1)-C(1C)       | 1.798(6)   | P(1)-C(1D)       | 1.802(6)   |
|                  |            |                  |            |
| C(1D)-P(1)-C(1B) | 110.5(3)   | C(1D)-P(1)-C(1C) | 107.3(3)   |
| C(1D)-P(1)-C(1A) | 110.3(3)   | C(1C)-P(1)-C(1B) | 110.4(3)   |
| C(1C)-P(1)-C(1A) | 109.4(3)   | C(1B)-P(1)-C(1A) | 108.9(3)   |
|                  |            |                  |            |

#### Symmetry operations used for equivalent atoms :

A : -x+1/2, y+1/2, -z+1/2 -x, -y, -z x-1/2, -y-1/2, z-1/2

| Compound                              | Fn045                                                  |
|---------------------------------------|--------------------------------------------------------|
| Chem. formula                         | $C_{50} H_{42} Cl_{10} Hg P_2$                         |
| Form. wght.                           | 1259.93                                                |
| Cryst. size [mm]                      | 0.42 x0.30 x0.28                                       |
| Cryst. system                         | Monoclinic                                             |
| Space group                           | <i>P</i> 2(1)/ <i>m</i>                                |
| a, [Å]                                | 13.28230(10)                                           |
| b, [Å]                                | 19.32390(10)                                           |
| c, [Å]                                | 20.4663(2)                                             |
| α, [°]                                | 90                                                     |
| β, [°]                                | 92.5638(2)                                             |
| γ, [°]                                | 90                                                     |
| V, [Å <sup>3</sup> ]                  | 5247.74(7)                                             |
| Ζ                                     | 4                                                      |
| $\rho$ (calcd.), [Mg/m <sup>3</sup> ] | 1.5947                                                 |
| μ [mm <sup>-1</sup> ]                 | 3.537                                                  |
| F(000)                                | 2488                                                   |
| Index range                           | $-15 \le h \le 15 - 22 \le k \le 21 - 23 \le l \le 23$ |
| 2 θ [°]                               | 25.44                                                  |
| Temp, [K]                             | 200(2)                                                 |
| Refl. collected                       | 8235                                                   |
| Refl. unique                          | 2198                                                   |
| Refl. observed $(4\sigma)$            | 2589                                                   |
| R (int.)                              | 0.0508                                                 |
| No. variables                         | 567                                                    |
| Weighting scheme <sup>1</sup>         | 0.0412/                                                |
| x/y                                   | 0.6537                                                 |
| GOOF                                  | 1.147                                                  |
| Final R (4o)                          | 0.0426                                                 |
| Final wR2                             | 0.1177                                                 |
| Larg. res. peak [e/Å <sup>3</sup> ]   | 0.304                                                  |

<u>**Table 61**</u> Crystal Data and Data Collection Parameters:

<sup>1</sup> w<sup>-1</sup> = 
$$\sigma^2 F_0^2 + (xP)^2 + yP$$
; P =  $(F_0^2 + 2F_c^2)/3$ 

## 7.6. Kristallographische Daten [Ph<sub>4</sub>P]<sup>+</sup><sub>2</sub>[Pd(SCN)<sub>4</sub>]<sup>2-</sup>

## Summenformel : C52 H40 N2 P2 Pd S4

| Tab. 62 | Crystal data and data collection |
|---------|----------------------------------|
| Tab. 63 | Solution and refinement          |
| Tab. 64 | Bond lengths and angles          |

### Table 62: Crystal data and data collection

| Empirical formula            | $C_{52} H_{40} N_2 P_2 Pd S_4$                                           |
|------------------------------|--------------------------------------------------------------------------|
| Formula weight               | 1017.53                                                                  |
| Crystal size                 | 0.18 x 0.06 x 0.05 mm                                                    |
| Crystal color and habit      | red rod                                                                  |
| Crystal system               | Monoclinic                                                               |
| Space group                  | P21/m                                                                    |
| Unit cell dimensions         | $a = 10.08290(10)$ Å $\alpha = 90.00^{\circ}$                            |
|                              | $b = 15.89010(10) ~~ \mathring{A} ~~ \beta = 91.7217(4)^\circ$           |
|                              | $c = 14.57850(10)$ Å $\gamma = 90.00^{\circ}$                            |
| Volume                       | 2334.69(3) Å <sup>3</sup>                                                |
| Z                            | 2                                                                        |
| Density (calculated)         | 1.447453(19) Mg/m <sup>3</sup>                                           |
| Absorption coefficient       | 0.686 mm <sup>-1</sup>                                                   |
| F(000)                       | 1040                                                                     |
| Diffractometer used          | CCD                                                                      |
| Radiation and wavelength     | MoK $\alpha$ with $\lambda$ =0.71073 Å                                   |
| Temperature                  | 200(2) K                                                                 |
| 2θ range for data collection | 0.99 to 27.485°                                                          |
| Index ranges                 | $-12 \leq h \leq 13 \qquad -20 \leq k \leq 20 \qquad -18 \leq l \leq 18$ |
| Reflections collected        | 5345                                                                     |
| Independent reflections      | 4144 ( $R_{int} = 0.0402$ )                                              |
| Observed reflections         | 2198 (F>4σ(F))                                                           |
| Absorption correction        | numerical                                                                |
| Max. and min. transmission   | 0.9766 and 0.9162                                                        |
| Experimental details :       |                                                                          |
|                              |                                                                          |

Crystal embedded in oil and mounted with Lithelen

## Table 63: Solution and refinement

| Structure                                           | solutio  | n progr | am                 | SIR97                          |
|-----------------------------------------------------|----------|---------|--------------------|--------------------------------|
| Solution                                            | direct   | methods | 8                  |                                |
| Refinement m                                        | ethod    | Full-m  | atrix Le           | east-Squares on F <sup>2</sup> |
| Hydrogen ator                                       | ns       | none    |                    |                                |
| Weighting sch                                       | eme      | w-1=o   | $2Fo^{2}+(1)$      | $P)^{2}+P$                     |
|                                                     |          | where   | P=(Fo <sup>2</sup> | $+2Fc^{2})/3$                  |
| Data / restraints / parameters 5345 / 0 / 286       |          |         |                    |                                |
| Data-to-parameter-ratio                             |          | tio     | 21.9:              | l (18.6 : 1 [F>4σ(F)])         |
| Final R indices [F>4o                               |          | 5(F)]   | R1 = 0             | .0402, wR2 = $0.1102$          |
| R indices (all data) $R1 = 0.0648$ , $wR2 = 0.1523$ |          |         |                    |                                |
| Goodness-of-Fit on F <sup>2</sup>                   |          | 2       | 1.184              |                                |
| Largest and mean $\Delta/\sigma$                    |          | 2       | 0.000              | 0.000                          |
| Largest difference peak                             |          | ak      | 0.804              | eÅ-3                           |
| Largest difference hole                             |          | le      | -1.556             | eÅ- <sup>3</sup>               |
| Refinement d                                        | etails : |         |                    |                                |
| Program used SHELXL (Sheldrick 1997)                |          |         |                    |                                |
| CifRtf version used 2.0                             |          |         |                    |                                |

| Pd(1)-S(1)       | 2.3394(8)  | Pd(1)-S(2)       | 2.3373(9)  |
|------------------|------------|------------------|------------|
| Pd(1)-S(1A)      | 2.3394(8)  | Pd(1)-S(2A)      | 2.3373(9)  |
| P(1)-C(1A)       | 1.785(6)   | P(1)-C(1B)       | 1.788(6)   |
| P(2)-C(1C)       | 1.798(6)   | P(2)-C(1D)       | 1.802(6)   |
| S(1)-C(1)        | 1.689(4)   | N(1)-C(1)        | 1.138(5)   |
| S(2)-C(2)        | 1.681(3)   | N(2)-C(2)        | 1.151(4)   |
| P(1)-C(1A)       | 1.801(3)   | P(1)-C(1B)       | 1.791(3)   |
| P(2)-C(1C)       | 1.796(3)   | P(2)-C(1D)       | 1.807(3)   |
| S(2)-Pd(1)-S(2A) | 180.00(3)  | S(1)-Pd(1)-S(1A) | 180.0      |
| S(2)-Pd(1)-S(1)  | 90.91(3)   | S(2)-Pd(1)-S(1A) | 89.09(3)   |
| S(1)-Pd(1)-S(2A) | 89.09(3)   | S(2A)-P(1)-S(1A) | 90.91(3)   |
| C(1)-S(1)-Pd(1)  | 110.05(13) | N(1)-C(1)-S(1)   | 176.2(3)   |
| C(2)-S(2)-Pd(1)  | 107.14(12) | N(2)-C(2)-S(2)   | 178.0(3)   |
| C(1D)-P(1)-C(1B) | 108.29(16) | C(1D)-P(1)-C(1C) | 114.28(16) |
| C(1D)-P(1)-C(1A) | 108.66(15) | C(1C)-P(1)-C(1B) | 107.04(14) |
| C(1C)-P(1)-C(1A) | 107.34(14) | C(1B)-P(1)-C(1A) | 111.27(14) |
|                  |            |                  |            |

Table 64: Selected Bond lengths  $[{\rm \AA}]$  and angles  $[^\circ]$  for fn037 .

### Symmetry operations used for equivalent atoms :

A : -x+1/2, y+1/2, -z+1/2 -x, -y, -z x-1/2, -y-1/2, z-1/2

| Compound                              | fn037                                                  |
|---------------------------------------|--------------------------------------------------------|
| Chem. formula                         | $C_{52} H_{40} N_2 P_2 Pd S_4$                         |
| Form. wght.                           | 1017.53                                                |
| Cryst. size [mm]                      | 0.18 x0.06 x0.05                                       |
| Cryst. system                         | Monoclinic                                             |
| Space group                           | P2(1)/m                                                |
| a, [Å]                                | 10.08290(10)                                           |
| b, [Å]                                | 15.89010(10)                                           |
| c, [Å]                                | 14.57850(10)                                           |
| α, [°]                                | 90                                                     |
| β, [°]                                | 91.7217(4)                                             |
| γ, [°]                                | 90                                                     |
| V, [Å <sup>3</sup> ]                  | 2334.69(3)                                             |
| Ζ                                     | 2                                                      |
| $\rho$ (calcd.), [Mg/m <sup>3</sup> ] | 1.447                                                  |
| μ [mm <sup>-1</sup> ]                 | 0.686                                                  |
| F(000)                                | 1040                                                   |
| Index range                           | $-12 \le h \le 13 - 20 \le k \le 20 - 18 \le l \le 18$ |
| 2 θ [°]                               | 28.50                                                  |
| Temp, [K]                             | 200(2)                                                 |
| Refl. collected                       | 40926                                                  |
| Refl. unique                          | 5345                                                   |
| Refl. observed $(4\sigma)$            | 4144                                                   |
| R (int.)                              | 0.0648                                                 |
| No. variables                         | 286                                                    |
| Weighting scheme <sup>1</sup>         | 0.0412/                                                |
| x/y                                   | 0.6537                                                 |
| GOOF                                  | 1.148                                                  |
| Final R ( $4\sigma$ )                 | 0.0402                                                 |
| Final wR2                             | 0.1102                                                 |
| Larg. res. peak [e/Å <sup>3</sup> ]   | 0.304                                                  |
|                                       |                                                        |

<u>**Table 65.**</u>Crystal Data and Data Collection Parameters:

 $^{1}$  w<sup>-1</sup>= $\sigma^{2}$ Fo<sup>2</sup>+(P)<sup>2</sup>+P where P=(Fo<sup>2</sup>+2Fc<sup>2</sup>)/3

#### 8. Literatur

- <sup>1</sup> E.Keßenich, F.Kopp, P.Mayer, A.Schulz, Angew. Chem. 2001, 113(10), im Druck.
- <sup>2</sup> A.F.Holleman, E.Wiberg, N.Wiberg, *Lehrbuch der Anorganischen Chemie*, 101.Auflage, Walter de Gruyter, Berlin, New York, **1995**, 599-612.
- <sup>3</sup> T.M.Klapötke, I.C. Tornieporth-Oetting, *Chemie der Nichtmetalle*, VCH, Weinheim, **1994**, 261-265, 299-303.
- <sup>4</sup> Norman Greenwood, Alan Earnshaw, *Chemie der Elemente*, 1. Aufl., VCH, Weinheim, **1988**, 946-969.
- <sup>5</sup> N.Burford, J.Passmore, J.C.P.Sanders, in *From Atoms to Polymers*, (Hersg.: J.F.Liebman, A. Greenberg), VCH, Weinheim, **1989**, 53.
- <sup>6</sup> T.M.Klapötke, I.C. Tornieporth-Oetting, *Chemie der Nichtmetalle*, VCH, Weinheim, **1994**, S.385.
- <sup>7</sup> M.Villena-Blanco, W.L. Jolly, *Inorg. Syntheses* Vol. IX, McGraw-Hill, **1967**, 98-111.
- <sup>8</sup> J.Passmore, M.Shriver, *Inorganic Chem.*, **1988**, 27, 2749.
- <sup>9</sup> O.Glemser, R.Mews, H.W Roesky, Chem. Ber. 1969, 102, 1523-1528.
- <sup>10</sup> S.Herler, H.Nöth, P.Mayer, A.Schulz, M.Suter, M.Vogt, eingereicht.
- <sup>11</sup> G.Beber, J Hanich, K.Dehnicke, Z. Naturforsch., 1984, 40b, 9-12.
- <sup>12</sup> P.Schwerdtfeger, M.Dolg, W.H.E.Schwarz, G.A.Bowmaker, P.D.W.Boyd *J. Chem. Phys.*, **1989**, *91*, 1762.
- <sup>13</sup> M.Knaupp, P.v.R.Schleyer, H.Stoll, J. Preuss, J. Am. Chem. Soc., 1991, 113, 6012.
- <sup>14</sup> P.G.Watson, E.Lork, R:Mews, J.Chem. Soc., Chem. Commun., 1994, 1069-1070.
- <sup>15</sup> K.O.Christe, W.W.Wilson J. Fluor. Chem., **1990**, 47, 117-120.
- <sup>16</sup> A.F.Holleman, E.Wiberg, N.Wiberg, *Lehrbuch der Anorganischen Chemie*, 101.Auflage,
   Walter de Gruyter, Berlin, New York, **1995**, S.1838-1841.
- <sup>17</sup> E.Kessenich, K.Polborn, A.Schulz *Inorg. Chem.*, **2001**, *40*, 1102-1109.
- <sup>18</sup> U.Demant, Konradi, J.Pebler, U.Müller, K.Dehnicke Z. Anorg. Allg. Chem., **1984**, 515, 69-80.
- <sup>19</sup> a) D. Wollins Nonmetal Rings, Cages and Clusters, Wiley, New York, **1988**;
  - b) A. J. Banister Nature (London), Phys. Sci. 1972, 237, 92;
  - c) H. W. Roesky Angew. Chem., Int. Ed. Engl. 1979, 18, 91;
  - d) B. M. Gimarc, N. Trinajstic' Pure Appl. Chem. 1980, 52, 1442;
  - e) R. Gleiter Angew. Chem., Int. Ed. Engl. 1981, 20, 444;
  - f) R. D. Harcourt, H. M. Hügel J. Inorg. Nucl. Chem., 1980, 43, 239;
  - g) T. Chivers, R. T. Oakley Top. Curr. Chem. 1982, 102, 117.
- <sup>20</sup> B.M.Gimarc, A.Juriç, J.Trinajstiç, *Inorg.Chim.Acta*, **1985**, *102*, 105-112.
- <sup>21</sup> J.W.Lauber, J.A.Ibers, *Inorg.Chem.*, **1975**, *14*, 348.
- <sup>22</sup> Gmelin Cu [B1] 61, Verlag Chemie GmbH: Weinheim, 257.
- <sup>23</sup> Gmelin Pd [B2] 61, Verlag Chemie GmbH: Weinheim, 221.
- <sup>24</sup> T.M. Klapötke, A.Schulz, *Quantenmechanische Methoden in der Hauptgruppenchemie*, Spektrum Akademischer Verlag, **1996**.
- <sup>25</sup> M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Revision A.6, Gaussian Inc.: Pittsburgh, PA, 1998.
- <sup>26</sup> G. Schaftenaar, Molden V3.6, , CMBI, the Netherlands.
- <sup>27</sup> A.D.Becke, J.Chem. Phys. 1993, 98, 5648-5652.
- <sup>28</sup> A.F.Holleman, E.Wiberg, N.Wiberg, *Lehrbuch der Anorganischen Chemie*, 101.Auflage,
  Walter de Gruyter, Berlin, New York, **1995**, 1837-1839.
- <sup>29</sup> W.L. Jolly, K.D. Maguire, *Inorganic Synthesis*, **1967**, S.107-109.
- <sup>30</sup> Gmelin Ag [B3] 61, Verlag Chemie GmbH: Weinheim, 334.
- <sup>31</sup> Gmelin Ag [B3] 61, Verlag Chemie GmbH: Weinheim, 297.
- <sup>32</sup> U. Demant, E. Conradi, J. Pepler, U. Müller, K. Dehnicke, Z. Anorg. Allgem. Chem., **1984**, 515, 69-80.
- <sup>33</sup> O.Glemser, B.Krebs, J.Wegner, E.Kindler, *Angew. Chem.*, **1969**, *81*, 568.
- O.Glemser, B.Krebs, J.Wegner, E.Kindler, Angew.Chem., Int. Ed. Engl. 1969, 8, 598.
- <sup>34</sup> D.Tran Qui, A.Daoud, T.Mhiri, Acta Crys., Sect. C (Cr.Str.Comm.), 1989, 45, 33.
- <sup>35</sup> Gmelin S-N-Verbindungen [B2], Verlag Chemie GmbH: Weinheim, 221.