Diplomarbeit in Anorganischer Chemie im Diplom-Studiengang Chemie an der Fakultät für Chemie und Pharmazie der Ludwig Maximilians Universität München

Gasphasenaciditäten CN-, NO- und NO₂substituierter Methanderivate

von Nadja Kramer aus Nürnberg

Ehrenwörtliche Versicherung

Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst habe, keine anderen als die angegebenen Hilfsmittel verwendet habe und die Stellen, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, mit Quellenangaben kenntlich gemacht habe.

Unterinn, 5.10.2006

.....

(Unterschrift des Verfassers)

Diplomarbeit eingereicht am 12.06.2006

Erklärung

Die vorliegende Arbeit wurde in der Zeit von Dezember 2005 bis Juni 2006 am Institut für Anorganische Chemie der Ludwig-Maximilians-Universität München unter der Anleitung von

Herrn PD Dr. Axel Schulz

angefertigt.

Inhaltsverzeichnis

1	EIN	LEITUNG	9
	1.1	Pseudohalogene/Pseudohalogenide	9
	1.2	Darstellung CN-, NO- und NO ₂ -substituierter Methanide	13
	1.3	Tautomerie bei CN-, NO- und NO2-substituierten Methanen/Methaniden	14
	1.4	Säure-Base-Begriff und pK_a -Wert-Berechnung	15
	1.5	Details zu den durchgeführten Rechnungen	18
2	ERC	GEBNISSE UND DISKUSSION	19
	2.1	Energiepotentialflächen	19
	2.1.	l Methan/Methanid	19
	2.1.2	2 Cyanmethane/Cyanmethanide	20
	2.1.	3 Nitrosomethane/Nitrosomethanide	24
	2.1.4	1 Nitromethane/Nitromethanide	31
	2.1.:	5 Cyannitrosomethane/Cyannitrosomethanide	36
	2.1.	6 Cyannitromethane/Cyannitromethanide	43
	2.1.	7 Nitronitrosomethane/Nitronitrosomethanide	47
	2.1.3	8 Cyannitronitrosomethan/Cyannitronitrosomethanid	55
	2.2	Struktur	58
	2.2.	l Methan/Methanid	58
	2.2.2	2 Cyanmethane/Cyanmethanide	58
	2.2.	3 Nitrosomethane/Nitrosomethanide	59
	2.2.4	1 Nitromethane/Nitromethanide	60
	2.2.:	5 Cyannitrosomethane/Cyannitrosomethanide	62
	2.2.	6 Cyannitromethane/Cyannitromethanide	63
	2.2.2	7 Nitronitrosomethane/Nitronitrosomethanide	64
	2.2.3	8 Cyannitronitrosomethan/Cyannitronitrosomethanid	65
	2.3	Resonanzstabilisierung	66
	2.4	Säurestärken in der Gasphase	67
	2.4.	l Cyanmethane/Cyanmethanide	67
	2.4.2	2 Nitrosomethane/Nitrosomethanide	69
	2.4.	3 Nitromethane/Nitromethanide	71
	2.4.4	Einfach substituierte Methane	73
	2.4.:	5 Doppelt substituierte Methane	75
	2.4.	5 Dreifach substituierte Methane	77

3	ZUSAMMENFASSUNG	.79
4	LITERATUR	81

Abbildungsverzeichnis

Abbildung 1.2: Schema des Grimmschen Hydridverschiebungssatzes	9
Abbildung 1.3: Darstellung von Dicyan-, Tricyan-, Nitrosodicyan- und	
Nitrodicyanmethaniden	. 13
Abbildung 1.4: Darstellung von Dinitro- und Trinitromethaniden.	. 13
Abbildung 1.5: C-H-gebundene und aci-Tautomere der Methan- und Methanid-Derivate	. 14
Abbildung 1.6: Thermodynamischer Zyklus zur Berechnung der pK_a -Werte	. 16
Abbildung 2.1: Isomere des Methanids	. 19
Abbildung 2.2: Methan.	. 19
Abbildung 2.3: Isomere des Cyanmethanids	. 20
Abbildung 2.4: Isomere des Cyanmethans	21
Abbildung 2.5: Dicyanmethanid.	22
Abbildung 2.6: Isomere des Dicyanmethans	22
Abbildung 2.7: Tricyanmethanid	23
Abbildung 2.8: Isomere des Tricyanmethans	23
Abbildung 2.9: Isomere des Nitrosomethanids.	24
Abbildung 2.10: Isomere des Nitrosomethans.	25
Abbildung 2.11: Isomere des Dinitrosomethanids	. 26
Abbildung 2.12: Isomere des Dinitrosomethans.	26
Abbildung 2.13: Isomere des Trinitrosomethanids.	28
Abbildung 2.14: Isomere des Trinitrosomethans.	29
Abbildung 2.15: Nitromethanid.	. 31
Abbildung 2.16: Isomere des Nitromethans	31
Abbildung 2.17: Dinitromethanid.	32
Abbildung 2.18: Isomere des Dinitromethans	33
Abbildung 2.19: Isomere des Trinitromethanids	34
Abbildung 2.20: Isomere des Trinitromethans	35
Abbildung 2.21: Isomere des Cyannitrosomethanids.	36
Abbildung 2.22: Isomere des Cyannitrosomethans	37
Abbildung 2.23: Dicyannitrosomethanid.	38
Abbildung 2.24: Isomere des Dicyannitrosomethans.	. 39
Abbildung 2.25: Isomere des Cyandinitrosomethanids.	. 40
Abbildung 2.26: Isomere des Cyandinitrosomethans.	. 41
Abbildung 2.27: Cyannitromethanid	43

Abbildung 2.28: Isomere des Cyannitromethans.	. 44
Abbildung 2.29: Dicyannitromethanid	. 45
Abbildung 2.30: Isomere des Dicyannitromethans.	. 45
Abbildung 2.31: Cyandinitromethanid	. 46
Abbildung 2.32: Isomere des Cyandinitromethans.	. 47
Abbildung 2.33: Isomere des Nitronitrosomethanids.	. 48
Abbildung 2.34: Isomere des Nitronitrosomethans	. 49
Abbildung 2.35: Isomere des Dinitrosonitromethanids.	. 51
Abbildung 2.36: Isomere des Dinitrosonitromethans.	. 52
Abbildung 2.37: Dinitronitrosomethanid.	. 54
Abbildung 2.38: Isomere des Dinitronitrosomethans.	. 54
Abbildung 2.39: Isomere des Cyannitronitrosomethanids.	. 55
Abbildung 2.40: Isomere des Cyannitronitrosomethans.	. 56
Abbildung 2.41: Methanid. Ausgewählte Bindungslängen und -winkel in Å und °	. 58
Abbildung 2.42: Methan. Ausgewählte Bindungslängen und -winkel in Å und °	. 58
Abbildung 2.43: Cyanmethanide. Ausgewählte Bindungslängen und -winkel in Å und °	. 59
Abbildung 2.44: Cyanmethane. Ausgewählte Bindungslängen und -winkel in Å und °	. 59
Abbildung 2.45: Nitrosomethanide. Ausgewählte Bindungslängen und -winkel in Å und °	. 60
Abbildung 2.46: Nitrosomethane. Ausgewählte Bindungslängen und -winkel in Å und °	. 60
Abbildung 2.47: Nitromethanide. Ausgewählte Bindungslängen und -winkel in Å und °	. 61
Abbildung 2.48: Nitromethane. Ausgewählte Bindungslängen und -winkel in Å und °	. 61
Abbildung 2.49: Cyannitrosomethanide. Ausgewählte Bindungslängen und -winkel in Å un	ıd
°	. 62
Abbildung 2.50: Cyannitrosomethane. Ausgewählte Bindungslängen und -winkel in Å und	٥.
	. 62
Abbildung 2.51: Cyannitromethanide. Ausgewählte Bindungslängen und -winkel in Å und	۰.
	. 63
Abbildung 2.52: Cyannitromethane. Ausgewählte Bindungslängen und -winkel in Å und °.	63
Abbildung 2.53: Nitronitrosomethanide. Ausgewählte Bindungslängen und -winkel in Å un	ıd
°	. 64
Abbildung 2.54: Nitronitrosomethane. Ausgewählte Bindungslängen und -winkel in Å und	۰.
	. 64
Abbildung 2.55: Cyannitronitrosomethanid. Ausgewählte Bindungslängen und -winkel in Å	ł
und °.	. 65

Abbildung 2.56: Cyannitronitrosomethan. Ausgewählte Bindungslängen und -winkel in Å	
und °	65
Abbildung 2.57: Delokalisierung des freien <i>p</i> -Elektronenpaars am zentralen Kohlenstoff-	
Atom bei (a) einfach substituierten Methaniden, (b) doppelt substituierten Methaniden	
und (c) dreifach substituierten Methaniden	56
Abbildung 2.58: Gasphasenaciditäten der Cyanmethane	57
Abbildung 2.59: Gasphasenaciditäten der <i>aci</i> -Cyanmethane	58
Abbildung 2.60: Gasphasenaciditäten der Nitrosomethane.	59
Abbildung 2.61: Gasphasenaciditäten der <i>aci</i> -Nitrosomethane	70
Abbildung 2.62: Gasphasenaciditäten der Nitromethane	71
Abbildung 2.63: Gasphasenaciditäten der <i>aci</i> -Nitromethane	72
Abbildung 2.64: Gasphasenaciditäten der einfach substituierten Methane.	73
Abbildung 2.65: Gasphasenaciditäten der einfach substituierten <i>aci</i> -Methane	74
Abbildung 2.66: Gasphasenaciditäten doppelt substituierter Methane	75
Abbildung 2.67: Gasphasenaciditäten doppelt substituierter <i>aci</i> -Methane	76
Abbildung 2.68: Gasphasenaciditäten dreifach substituierter Methane	77
Abbildung 2.69: Gasphasenaciditäten dreifach substituierter aci-Methane	78

Tabellenverzeichnis

Tabelle 1.1: Alle Permutationen der Methanide des Typs $[CR_1R_2R_3]^-$ mit $R_{1,2,3} = H$, C	CN, NO,
NO ₂	12
Tabelle 2.1: Absolute Energiewerte Methan/Methanid.	
Tabelle 2.2: Absolute Energiewerte Cyanmethan/Cyanmethanid.	21
Tabelle 2.3: Absolute Energiewerte Dicyanmethan/Dicyanmethanid.	
Tabelle 2.4: Absolute Energiewerte Tricyanmethan/Tricyanmethanid	24
Tabelle 2.5: Absolute Energiewerte Nitrosomethan/Nitrosomethanid.	
Tabelle 2.6: Absolute Energiewerte Dinitrosomethan/Dinitrosomethanid	
Tabelle 2.7: Absolute Energiewerte Trinitrosomethan/Trinitrosomethanid	30
Tabelle 2.8: Absolute Energiewerte Nitromethan/Nitromethanid.	
Tabelle 2.9: Absolute Energiewerte Dinitromethan/Dinitromethanid.	
Tabelle 2.10: Absolute Energiewerte Trinitromethan/Trinitromethanid.	
Tabelle 2.11: Absolute Energiewerte Cyannitrosomethan/Cyannitrosomethanid	
Tabelle 2.12: Absolute Energiewerte Dicyannitrosomethan/Dicyannitrosomethanid	
Tabelle 2.13: Absolute Energiewerte Cyandinitrosomethan/Cyandinitrosomethanid	

Tabelle 2.14: Absolute Energiewerte Cyannitromethan/Cyannitromethanid.	44
Tabelle 2.15: Absolute Energiewerte Dicyannitromethan/Dicyannitromethanid.	46
Tabelle 2.16: Absolute Energiewerte Cyandinitromethan/Cyandinitromethanid	47
Tabelle 2.17: Absolute Energiewerte Nitronitrosomethan/Nitronitrosomethanid	50
Tabelle 2.18: Absolute Energiewerte Dinitrosonitromethan/Dinitrosonitromethanid	53
Tabelle 2.19: Absolute Energiewerte Dinitronitrosomethan/Dinitronitrosomethanid	55
Tabelle 2.20: Absolute Energiewerte Cyannitronitrosomethan/Cyannitronitrosomethanid.	57
Tabelle 2.21: Gasphasenaciditäten der Cyanmethane.	67
Tabelle 2.22: Gasphasenaciditäten der aci-Cyanmethane	68
Tabelle 2.23: Gasphasenaciditäten der Nitrosomethane.	69
Tabelle 2.24: Gasphasenaciditäten der aci-Nitrosomethane.	70
Tabelle 2.25: Gasphasenaciditäten der Nitromethane	71
Tabelle 2.26: Gasphasenaciditäten der aci-Nitromethane	72
Tabelle 2.27: Gasphasenaciditäten der einfach substituierten Methane.	73
Tabelle 2.28: Gasphasenaciditäten der einfach substituierten aci-Methane.	74
Tabelle 2.29: Gasphasenaciditäten doppelt substituierter Methane	75
Tabelle 2.30: Gasphasenaciditäten doppelt substituierter aci-Methane	76
Tabelle 2.31: Gasphasenaciditäten dreifach substituierter Methane	77
Tabelle 2.32: Gasphasenaciditäten dreifach substituierter aci-Methane	78

1 EINLEITUNG

1.1 Pseudohalogene/Pseudohalogenide

Der Begriff *Pseudohalogen* wurde 1925 von *Birckenbach* eingeführt¹ und in den folgenden Jahren in weiteren Veröffentlichungen beschrieben.^{2,3} Bereits im Jahr 1704 entdeckte *Diesbach* das erste Pseudohalogenid in Form von in Berliner Blau gebundenem Cyanid.⁴ Weitere Cyanide wie Kaliumcyanid, und Cyanwasserstoff gewann *Scheele* 1782^{5,6} und 1815 erhielt *Gay-Lussac* Dicyan⁷.

Die Anionen der Pseudohalogene nehmen eine zentrale Stellung innerhalb der Pseudohalogenverbindungen ein. Zu den Pseudohalogeniden zählt man z.B. Cyanid CN^- , Fulminat CNO^- , Cyanat OCN^- , Thiocyanat SCN^- , Selenocyanat $SeCN^-$, Azid N_3^- , Dicyanamid $N(CN)_2^-$.

Eine weitere Klasse von Pseudohalogeniden lässt sich mit Hilfe des Grimmschen Hydridverschiebungssatzes erschließen: Im Jahr 1925 entwickelte *Grimm* den nach ihm benannten Grimmschen Hydridverschiebungssatz.⁸ Dieser Regel nach nehmen Atome durch Aufnahme von n (n = 1, 2, 3, 4) Wasserstoffatomen die Eigenschaften der im Periodensystem um n Ordnungszahlen höheren Atome an. Sie bilden so genannte Pseudoatome. Entsprechend der Aufstellung in Abbildung 1.1 liegen die hydroisosteren (= isoelektronisch und isoprotonisch) Atomgruppen FH₂, OH₃, NH₄ wie Natrium in Form einfach geladener Kationen vor. Die ungeladenen Verbindungen HF, H₂O, NH₃ und CH₄ entsprechen dem Edelgas Neon. Durch den Grimmschen Hydridverschiebungssatz lässt sich erklären, dass sich Fluorid- und Hydroxidionen in Silikaten, Phosphaten u.s.w. gegenseitig ersetzen.

Abbildung 1.1: Schema des Grimmschen Hydridverschiebungssatzes

Die Pseudoelemente OH, NH₂ und CH₃ besitzen demnach ähnliche Eigenschaften, wie z.B. die Bildung einfach geladener Anionen, wie das Element Fluor. Werden nun bei den Verbindungen NH₂ (NH₂⁻) oder CH₃ (CH₃⁻) die Wasserstoffatome durch die elektronenziehenden mesomeriefähigen Gruppen CN, NO und NO₂ ersetzt, gelangt man zur Klasse der resonanzstabilisierten nichtlinearen Pseudohalogene bzw. Pseudohalogenide.⁹ Im Falle des Methanids erhält man Verbindungen des Typs $[H_2CR^1]^-$, $[HCR^1R^2]^-$ und $[CR^1R^2R^3]^-$ mit $R^{1,2,3} = CN$, NO, NO₂ sowie alle möglichen Permutationen von $R^{1,2,3}$.

Die Pseudohalogenide zeichnen sich in ihrem chemischen Verhalten durch ihre ausgeprägte Ähnlichkeit zu den Halogeniden aus:

- Sie bilden schwer lösliche Silber(I)-, Quecksilber(I)- und Blei(II)-Salze.
- Es existieren Pseudohalogenwasserstoffe mit unterschiedlicher Acidität in wässriger Lösung.
- Mit Metallen bilden Pseudohalogenide verschiedene Typen von Metallpseudohalogeniden, wie z.B. Pseudohalogenkomplexe, mit Nichtmetallen kovalente Nichtmetallpseudohalogenide.
- Durch geeignete Oxidationsmittel werden Pseudohalogenidionen zu den entsprechenden Pseudohalogenen oxidiert, was jedoch noch nicht mit allen Pseudohalogeniden gelungen ist.
- Die flüchtigen kovalenten Pseudohalogene vermögen Metalle zu Metallpseudohalogeniden zu oxidieren.
- Viele Pseudohalogene bilden kovalente Halogenpseudohalogenide oder Interpseudohalogenverbindungen.

Zunächst wurden nur die chemischen Eigenschaften von CN^- , N_3^- und XCN^- (X = O. S, Se) mit denen der Halogenide verglichen.¹⁰ Später wurde auch die Ähnlichkeit des Tricyanmethanidions, das bereits 1896 entdeckt worden war¹¹, mit den Halogeniden von *Birckenbach* festgestellt.¹² Außerdem erstreckt sich der Begriff Pseudohalogene bzw. Pseudohalogenide auch in gewissem Umfang auf Nitritgruppen und -Ionen.¹³

Obwohl zwischen Pseudohalogeniden und Halogeniden Ähnlichkeit besteht, unterscheiden sie sich auch in vielen Punkten. Pseudohalogenide besitzen eine kompliziertere Struktur als Halogenide und sind somit auch vielfältiger. Dass sie jedoch Ähnlichkeiten im chemischen Verhalten aufweisen, liegt an gemeinsamen Strukturmerkmalen. Alle Pseudohalogenide sind einwertig negative Anionen, die durch Mesomerie stabilisiert werden. Die meisten von ihnen Die Wasserstoffverbindungen der Pseudohalogenide nennt man Pseudohalogenidwasserstoffsäuren, da sie in polaren Lösungsmitteln Pseudohalogenidionen bilden.

In dieser Arbeit sollen nun die theoretischen Gasphasenaciditäten, welche ein Maß für die Säurestärke sind, der Pseudohalogenide des Typs $[H_2CR^1]^-$, $[HCR^1R^2]^-$ und $[CR^1R^2R^3]^-$ mit $R^{1,2,3} = CN$, NO, NO₂ sowie alle möglichen Permutationen von $R^{1,2,3}$ berechnet werden (siehe Tabelle 1).

Säure	Anion	Struktur (Anion)	Literatur
CH ₃ (CN)	$[CH_2(CN)]^-$		14
$CH_2(CN)_2$	$[CH(CN)_2]^-$		15
CH(CN) ₃	$[C(CN)_3]^-$		16
CH ₃ (NO)	$[CH_2(NO)]^-$		17
CH ₂ (NO) ₂	$[CH(NO)_2]^-$	مهلمه	18
CH(NO) ₃	$[C(NO)_3]^-$.	nicht bekannt
CH ₃ (NO ₂)	[CH ₂ (NO ₂)] ⁻		19
$CH_2(NO_2)_2$	$[CH(NO_2)_2]^-$	۳ ۵ ۵ میڈی	20
CH(NO ₂) ₃	$[C(NO_2)_3]^-$		21
CH ₂ (CN)(NO)	[CH(CN)(NO)] ⁻		22
CH ₂ (CN)(NO ₂)	$[CH(CN)(NO_2)]^-$	- de	23
CH ₂ (NO)(NO ₂)	$[CH(NO)(NO_2)]^-$	٠	24
CH(CN) ₂ (NO)	$[C(CN)_2(NO)]^-$	*	25
CH(CN)(NO) ₂	[C(CN)(NO) ₂] ⁻	6-0-0-0 6 6-0-0-0	nicht bekannt
CH(CN) ₂ (NO ₂)	$[C(CN)_2(NO_2)]^-$	••• •• ^{••} ••	26
CH(CN)(NO ₂) ₂	$[CH(CN)(NO_2)_2]^-$	• • • • •	27
CH(NO)(NO ₂) ₂	$[C(NO)(NO_2)_2]^-$		28
CH(NO) ₂ (NO ₂)	$[C(NO)_2(NO_2)]^-$		nicht bekannt
CH(CN)(NO)(NO ₂)	$[C(CN)(NO)(NO_2)]^-$		29

Tabelle 1.1: Alle Permutationen der Methanide des Typs $[CR_1R_2R_3]^-$ mit $R_{1,2,3} = H$, CN, NO, NO₂

1.2 Darstellung CN-, NO- und NO₂-substituierter Methanide

Meist geht die Synthese der Methanide von den freien Säuren aus. Diese werden intermediär erzeugt oder isoliert, um dann neutralisiert zu werden. Dicyanmethanid³⁰ und Tricyanmethanid³¹ werden über Malondinitril dargestellt (s. Abbildung 1.2 *a* und *b*). Zur Synthese von Dicyannitrosomethanid wird ebenfalls Malondinitril verwendet. Es wird Nitrosiert und danach basisch aufgearbeitet (s. Abbildung 1.2 *c*).³² Dicyannitromethanid wird durch Oxidation des Dicyannitrosomethanids mit Ammoniumcer(IV)nitrat dargestellt (s. Abbildung 1.2 *d*).³³

Abbildung 1.2: Darstellung von Dicyan-, Tricyan-, Nitrosodicyan- und Nitrodicyanmethaniden.

Durch Nitrierung von Babitursäure und anschließende basische Aufarbeitung wird Dinitromethanid dargestellt (s. Abbildung 1.3).³⁴ Durch schonende Nitrierung von Essigsäureanhydrid und anschließender basischer Aufarbeitung in Gegenwart von Natriumsulfit wird Trinitromethanid dargestellt (s. Abbildung 1.3).³⁵

Abbildung 1.3: Darstellung von Dinitro- und Trinitromethaniden.

Die Alkalimethanide sind bei Raumtemperatur meistens stabil, jedoch sind die Nitro- und Nitrosoderivate wärme- und schlagempfindlich und zersetzen sich langsam in polaren Lösemitteln.

1.3 Tautomerie bei CN-, NO- und NO₂-substituierten Methanen/Methaniden

Bei den CN-, NO- und NO₂-substituierten Methanen und Methaniden gibt es zwei unterschiedliche Verknüpfungsmuster. Einerseits kann das Proton am zentralen Kohlenstoff-Atom gebunden sein, was im Folgenden als C-H-gebundenes Tautomer bezeichnet wird, andererseits kann das Proton am elektronegativsten Atom einer der funktionellen Gruppen gebunden sein, was im Folgenden als *aci*-Tautomer bezeichnet wird. Die den unterschiedlichen funktionellen Gruppen entsprechenden Verknüpfungsmöglichkeiten sind in Abbildung 1.4 dargestellt. Dementsprechend muss vor der Berechnung der Gasphasenaciditäten herausgefunden werden, welches der möglichen Tautomere das energetisch begünstigte ist.

Abbildung 1.4: C-H-gebundene und aci-Tautomere der Methan- und Methanid-Derivate.

1.4 Säure-Base-Begriff und *pK*_a-Wert-Berechnung

Nach der ersten allgemein gültigen Säure-Base-Theorie nach *Arrhenius* aus dem Jahr 1883 sind Säuren Wasserstoffverbindungen, die durch Dissoziation in wässriger Lösung H⁺-Ionen bilden, und Basen Hydroxide, die durch Dissoziation in wässriger Lösung OH⁻-Ionen bilden.

Diese Theorie wurde im Jahre 1923 von *Brönsted* erweitert: Demnach sind Säuren Stoffe, die H⁺-Ionen (Protonen) abspalten können und Basen Stoffe, die H⁺-Ionen aufnehmen können. Man bezeichnet die durch Protonenabspaltung aus einer Säure entstandene Base als konjugierte Base. Säure und konjugierte Base ergeben ein Säure-Base-Paar. In der Folgereaktion, in der das Proton verbraucht wird, entsteht aus einer Base wiederum eine Säure. Es sind also immer zwei Säure-Base-Paare an einer Protonenübertragung (Protolyse) beteiligt, zwischen denen ein Gleichgewicht besteht. Bei einer starken Säure ist die Tendenz Protonen abzugeben groß. Ihre konjugierte Base, deren Tendenz Protonen aufzunehmen gering ist, ist dann schwach. Bei einer schwachen Säure verhält es sich genau umgekehrt, ihre konjugierte Base ist stark. Durch die Säure- bzw. Basenkonstante kann die Stärke einer Brönsted-Säure bzw. -Base quantitativ erfasst werden.

Brönsted-Säuren müssen wasserstoffhaltig (prototrop) sein. *Lewis* entwickelte im Jahr 1923 ein allgemeineres Säure-Base-Konzept, demnach Lewis-Säuren Teilchen mit unbesetzten Valenzorbitalen sind. Sie können unter Bildung einer kovalenten Bindung ein Elektronenpaar aufnehmen (Elektronenpaarakzeptoren). Lewis-Basen dagegen besitzen ein freies Elektronenpaar, welches zur Bildung einer kovalenten Bindung geeignet ist (Elektronenpaardonatoren). Durch *Pearson* erfolgte 1963 nur eine qualitative Einordnung der Lewis-Säuren und -Basen in harte und weiche Säuren und Basen.³⁶

Der absolute pK_a -Wert (negativer dekadischer Logarithmus der Säurekonstante) einer Säure-Base-Reaktion kann über ihre Gasphasenacidität berechnet werden. Die Gasphasenacidität ist die freie Reaktionsenthalpie einer Protolysereaktion in der Gasphase. Sie wird aus einer Frequenzanalyse der betreffenden Stoffe ermittelt.

Um die pK_a -Werte aus den Gasphasenaciditäten zu ermitteln, benötigt man folgenden thermodynamischen Zyklus^{37, 38, 39}:

Abbildung 1.5: Thermodynamischer Zyklus zur Berechnung der *p*K_a-Werte.

Die Differenz der freien Reaktionsenthalpie in Lösung ΔG_{aq} und daraus der pK_a -Wert können wie folgt berechnet werden:

$$pK_a = -\log K_a$$

$$\Delta G_{aq} = -2,303 \text{ RT} \log K_a$$

daraus folgt:
$$pK_a = \Delta G_{aq} / 2,303 \text{ RT}$$
 (1)

$$f \ddot{u} r \Delta G_{aq} g \dot{i} lt: \Delta G_{aq} (1M) = \Delta G_{gas} (1M) + \Delta G_{solv} (A^{-}) + \Delta G_{solv} (H^{+}) - \Delta G_{solv} (HA)$$
(2)

mit
$$\Delta G_{gas}(1M) = G_{gas}(A^{-}, 1M) + G_{gas}(H^{+}, 1M) - G_{gas}(HA, 1M)$$
.

Da *Gaussian03* die Solvatationsenergien für 1M Lösungen berechnet, die Gasphasenaciditäten jedoch für Systeme mit einem Gesamtdruck von 1atm berechnet werden, müssen die Ausdrücke für die entsprechenden Gasphasenaciditäten umgerechnet werden:

allgemein gilt für volumenabhängiges G:

$$\Delta G = RT \ln (V_1/V_2)$$

daraus folgt:

$$G_{gas} (1M) - G_{gas} (1 \text{ atm}) = RT \ln (1 / 24,46)$$

$$G_{gas} (1M) = G_{gas} (1 \text{ atm}) + RT \ln (24,46)$$
 (3).

Der Wert 24,46 entspricht dem molaren Volumen eines idealen Gases bei Raumtemperatur (25 °C), womit das Umrechnungsproblem gelöst ist.

Für
$$G_{gas} (H^+)$$
 gilt: $G_{gas} (H^+) = H (H^+) - S(H^+)T$ $G_{gas} (H^+) = E_{trans} + dw - S(H^+)T$ $dw = Volumenarbeit$ $G_{gas} (H^+) = 3/2 RT + RT - S (H^+)T$ $G_{gas} (H^+) = 5/2 RT - S (H^+)T.$

Die Sackur-Tetrode-Gleichung⁴⁰ kann für ideale, einatomige Gase angewendet werden, so dass für die translatorische Entropie $S(H^+)$ gilt:

$$S = n \cdot R \cdot \ln \left(\frac{e^{\frac{5}{2}} \cdot k \cdot T}{p \cdot \Lambda^3} \right) \quad mit \quad \Lambda = \frac{h}{2\pi \cdot m \cdot k \cdot T}$$

und somit:
$$G_{gas}(H^+) = -6,28 \text{ kcal mol}^{-1} = -26,28 \text{ kJ mol}^{-1}$$
 (4).

Aus den Gleichungen (1), (2), (3) und (4) kann der pK_a -Wert folgendermaßen ermittelt werden:

$$p\mathbf{K}_{\mathbf{a}} = \Delta G_{aq} / 2,303 \text{ RT} =$$

$$= \Delta G_{aq} (1M) / 2,3030 \text{ RT} = \{\Delta G_{gas} (1M) + \Delta G_{solv} (A^{-}) + \Delta G_{solv} (H^{+}) - \Delta G_{solv} (HA)\} / 2,3030 \text{ RT} =$$

$$= \{G_{gas} (A^{-}, 1M) + G_{gas} (H^{+}, 1M) - G_{gas} (HA, 1M) + \Delta G_{solv} (A^{-}) + \Delta G_{solv} (H^{+}) - \Delta G_{sol} (HA)\} / 2,3030 \text{ RT} =$$

$$= \{[G_{gas} (A^{-}, 1 \text{ atm}) + \text{RT} \ln (24,46)] + [G_{gas} (H^{+}, 1 \text{ atm}) + \text{RT} \ln (24,46)] - (G_{gas} (HA, 1 \text{ atm}) + \text{RT} \ln (24,46)] + \Delta G_{solv} (A^{-}) + \Delta G_{solv} (HA)\} / 2,3030 \text{ RT} =$$

$$= \{[G_{gas} (A^{-}, 1 \text{ atm}) + \Delta G_{solv} (A^{-})] - [G_{gas} (HA, 1 \text{ atm}) + \Delta G_{solv} (HA)] + \text{RT} \ln (24,46) - (1107 \text{ kJ mol}^{-1} - 26,28 \text{ kJ mol}^{-1}\} / 2,3030 \text{ RT} =$$

$$= \{[G_{gas} (A^{-}, 1 \text{ atm}) + \Delta G_{solv} (A^{-})] - [G_{gas} (HA, 1 \text{ atm}) + \Delta G_{solv} (HA)] - (1107 \text{ kJ mol}^{-1} - 26,28 \text{ kJ mol}^{-1}\} / 2,3030 \text{ RT} =$$

$$= \{[G_{gas} (A^{-}, 1 \text{ atm}) + \Delta G_{solv} (A^{-})] - [G_{gas} (HA, 1 \text{ atm}) + \Delta G_{solv} (HA)] - (1107 \text{ kJ mol}^{-1} - 26,28 \text{ kJ mol}^{-1}\} / 2,3030 \text{ RT} =$$

$$= \{[G_{gas} (A^{-}, 1 \text{ atm}) + \Delta G_{solv} (A^{-})] - [G_{gas} (HA, 1 \text{ atm}) + \Delta G_{solv} (HA)] - (1107 \text{ kJ mol}^{-1} - 26,28 \text{ kJ mol}^{-1}\} / 2,3030 \text{ RT} =$$

$$= \{[G_{gas} (A^{-}, 1 \text{ atm}) + \Delta G_{solv} (A^{-})] - [G_{gas} (HA, 1 \text{ atm}) + \Delta G_{solv} (HA)] - (5).$$

1.5 Details zu den durchgeführten Rechnungen

Die Gasphasenaciditäten wurden per Geometrieoptimierung und anschließende Frequenzanalyse berechnet. Hierzu wurden die Basissätze B3LYP/6-31G(d,p), B3LYP/aug-cc-pvDZ und B3LYP/aug-cc-pvTZ verwendet.

Aus der Frequenzanalyse können die gesuchten Enthalpien H_{tot} (T = 0 K), H_{298} (T = 298 K) und die freie Ethalpie G_{298} (T = 298 K) als Summe der Grundzustandsenergie mit den entsprechenden Korrekturtermen berechnet werden. Dementsprechend wurde um H_{tot} zu ermitteln, der Nullpunktskorrekturterm zur Grundzustandsenergie addiert. Ebenso wurden die thermischen Korrekturterme für H_{298} (beinhalten Nullpunktskorrekturterm, E_{vib} , E_{rot} , E_{trans} , E_{el} , etc.) und G_{298} (enthalten zusätzlich die translatorischen Entropieterme S · T) addiert.

Die in den folgenden Kapiteln angegebenen Energiewerte beziehen sich soweit nicht anders angegeben auf die freie Enthalpie berechnet über B3LYP/aug-cc-pvTZ.

2 ERGEBNISSE UND DISKUSSION

2.1 Energiepotentialflächen

2.1.1 Methan/Methanid

Für das Methanid wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.1). Der Übergangszustand mit D_{3h} -Symmetrie (NIMAG = 1) liegt energetisch um 2,35 kcal mol⁻¹ über dem Molekül mit C_{3v} -Symmetrie.

 $CH_3^- D_{3h}$ **Abbildung 2.1:** Isomere des Methanids.

Die korrespondierende Säure Methan besitzt T_d -Symmetrie (siehe Abbildung 2.2).

 $CH_4 T_d$ **Abbildung 2.2:** Methan.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
CH ₃ ⁻	6-31G(d,p)	-39,777901	-39,746393	-39,767571
$D_{3\mathrm{h}}$	aug-cc-pvDZ	-39,842922	-39,811247	-39,832431
	aug-cc-pvTZ	-39,858882	-39,827089	-39,848245
CH ₃ ⁻	6-31G(d,p)	-39,796028	-39,764399	-39,786362
$C_{3\mathrm{v}}$	aug-cc-pvDZ	-39,8471547	-39,815037	-39,837041
	aug-cc-pvTZ	-39,8623955	-39,830012	-39,851992
CH ₄	6-31G(d,p)	-40,5240195	-40,475183	-40,496314
$T_{ m d}$	aug-cc-pvDZ	-40,520627	-40,472577	-40,493730
	aug-cc-pvTZ	-40,538431	-40,490049	-40,511173

 Tabelle 2.1: Absolute Energiewerte Methan/Methanid.

2.1.2 Cyanmethane/Cyanmethanide

2.1.2.1 Cyanmethan/Cyanmethanid

Für Cyanmethanid wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.3). Der Übergangszustand mit C_{2v} -Symmetrie (NIMAG = 1), dessen Wasserstoff-Atome leicht aus der Molekülebene ragen, liegt energetisch um 0,42 kcal mol⁻¹ über dem planaren Molekül mit C_{s} -Symmetrie.

Abbildung 2.3: Isomere des Cyanmethanids.

Für die korrespondierende Säure Cyanmethan wurden ebenfalls zwei stationäre Punkte berechnet (siehe Abbildung 2.4). Das *aci*-Cyanmethan mit C_s -Symmetrie liegt energetisch um 22,12 kcal mol⁻¹ über dem C-H-gebundenen Tautomer mit C_{3v} -Symmetrie.

 $CH_2CNH C_s$

CH₃CN C_{3v}

Abbildung 2.4: Isomere des Cyanmethans.

 Tabelle 2.2: Absolute Energiewerte Cyanmethan/Cyanmethanid.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
CH ₂ CN ⁻	6-31G(d,p)	-132,125256	-132,091027	-132,118093
$C_{ m 2v}$	aug-cc-pvDZ	-132,168705	-132,134835	-132,162003
	aug-cc-pvTZ	-132,204002	-132,170048	-132,197160
CH ₂ CN ⁻	6-31G(d,p)	-132,126002	-132,090802	-132,118956
$C_{ m s}$	aug-cc-pvDZ	-132,168721	-132,133933	-132,162882
	aug-cc-pvTZ	-132,204043	-132,169128	-132,197834
CH ₂ CNH	6-31G(d,p)	-132,718343	-132,669928	-132,698319
$C_{ m s}$	aug-cc-pvDZ	-132,734832	-132,686722	-132,715136
	aug-cc-pvTZ	-132,772045	-132,723873	-132,752228
CH ₃ CN	6-31G(d,p)	-132,759146	-132,709161	-132,737723
$C_{3\mathrm{v}}$	aug-cc-pvDZ	-132,770899	-132,721489	-132,750130
	aug-cc-pvTZ	-132,808632	-132,758912	-132,787481

2.1.2.2 Dicyanmethan/Dicyanmethanid

Dicyanmethanid besitzt C_{2v} -Symmetrie (siehe Abbildung 2.5).

 $CH(CN)_2^- C_{2v}$

Abbildung 2.5: Dicyanmethanid.

Für die korrespondierende Säure Dicyanmethan wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.6). Das *aci*-Dicyanmethan mit C_1 -Symmetrie liegt energetisch um 11,57 kcal mol⁻¹ über dem C-H-gebundenen Isomer mit C_{2v} -Symmetrie.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
CH(CN)2	6-31G(d,p)	-224,423891	-224,386711	-224,419073
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-224,470492	-224,433674	-224,466073
	aug-cc-pvTZ	-224,526387	-224,489454	-224,521782
CH(CNH)CN	6-31G(d,p)	-224,957887	-224,908370	-224,941694
C_1	aug-cc-pvDZ	-224,986463	-224,937245	-224,970609
	aug-cc-pvTZ	-225,044274	-224,994959	-225,028238
CH ₂ (CN) ₂	6-31G(d,p)	-224,979963	-224,929455	-224,962985
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-225,005840	-224,955743	-224,989383
	aug-cc-pvTZ	-225,063513	-225,013160	-225,046681

 Tabelle 2.3: Absolute Energiewerte Dicyanmethan/Dicyanmethanid.

2.1.2.3 Tricyanmethan/Tricyanmethanid Tricyanmethanid besitzt D_{3h} -Symmetrie (siehe Abbildung 2.7).

 $\operatorname{CCN}_3^- D_{3h}$ **Abbildung 2.7:** Tricyanmethanid.

Für die korrespondierende Säure Tricyanmethan wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.8). Das *aci*-Tricyanmethan mit C_s -Symmetrie liegt energetisch um 0,73 kcal mol⁻¹ über dem C-H-gebundenen Isomer mit C_{3v} -Symmetrie.

Abbildung 2.8: Isomere des Tricyanmethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
CCN ₃ ⁻	6-31G(d,p)	-316,694623	-316,656212	-316,691975
$D_{3\mathrm{h}}$	aug-cc-pvDZ	-316,749741	-316,711769	-316,747652
	aug-cc-pvTZ	-316,826204	-316,788073	-316,823866
C(CNH)(CN) ₂	6-31G(d,p)	-317,186089	-317,136004	-317,174147
$C_{ m s}$	aug-cc-pvDZ	-317,226585	-317,176837	-317,215044
	aug-cc-pvTZ	-317,305036	-317,255142	-317,293224
CH(CN) ₃	6-31G(d,p)	-317,189981	-317,139471	-317,177814
$C_{3\mathrm{v}}$	aug-cc-pvDZ	-317,228650	-317,178492	-317,216995
	aug-cc-pvTZ	-317,306475	-317,256074	-317,294389

 Tabelle 2.4:
 Absolute Energiewerte Tricyanmethan/Tricyanmethanid.

2.1.3 Nitrosomethane/Nitrosomethanide

2.1.3.1 Nitrosomethan/Nitrosomethanid

Für Nitrosomethanid wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.9). Beide Moleküle besitzen C_s -Symmetrie. Das *aci*-Nitrosomethanid liegt energetisch um 19,877 kcal mol⁻¹ über dem C-H-gebundenem Isomer.

Abbildung 2.9: Isomere des Nitrosomethanids.

Für die korrespondierende Säure Nitrosomethan wurden ebenfalls zwei stationäre Punkte berechnet (siehe Abbildung 2.10). Das C-H-gebundene Nitrosomethan mit C_1 -Symmetrie liegt energetisch um 12,519 kcal mol⁻¹ über dem *aci*- Nitrosomethan mit C_s -Symmetrie.

 Tabelle 2.5: Absolute Energiewerte Nitrosomethan/Nitrosomethanid.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
CHNOH	6-31G(d,p)	-169,162698	-169,128995	-169,157567
$C_{ m s}$	aug-cc-pvDZ	-169,227037	-169,193315	-169,221942
	aug-cc-pvTZ	-169,267661	-169,233885	-169,262533
CH ₂ NO ⁻	6-31G(d,p)	-169,199900	-169,165412	-169,193705
$C_{ m s}$	aug-cc-pvDZ	-169,259865	-169,225439	-169,253679
	aug-cc-pvTZ	-169,300425	-169,265996	-169,294209
CH ₃ NO	6-31G(d,p)	-169,798424	-169,750412	-169,779864
C_1	aug-cc-pvDZ	-169,823668	-169,776062	-169,805530
	aug-cc-pvTZ	-169,866214	-169,818490	-169,847941
CH ₂ NOH	6-31G(d,p)	-169,816364	-169,767306	-169,796052
$C_{ m s}$	aug-cc-pvDZ	-169,844917	-169,796060	-169,824792
	aug-cc-pvTZ	-169,888015	-169,839166	-169,867891

2.1.3.2 Dinitrosomethan/Dinitrosomethanid

Für Dinitrosomethanid wurden vier stationäre Punkte berechnet (siehe Abbildung 2.11). Das *aci*-Dinitrosomethanid besitzt C_s -Symmetrie und liegt energetisch um 18,352 kcal mol⁻¹ über dem *w*-förmigen C-H-gebundenen Molekül. Das *u*-förmige C-H-gebundene Molekül besitzt C_{2v} -Symmetrie und liegt energetisch um 12,531 kcal mol⁻¹ über dem *w*-förmigen C-H-gebundenen Molekül. Das *s*-förmige C-H-gebundene Molekül besitzt C_s -Symmetrie und liegt energetisch um 6,719 kcal mol⁻¹ über dem *w*-förmigen C-H-gebundenen Molekül. Das *w*-förmige C-H-gebundene Molekül besitzt C_{2v} -Symmetrie und liegt energetisch um 6,719 kcal mol⁻¹ über dem *w*-förmigen C-H-gebundenen Molekül. Das *w*-förmige C-H-gebundene Molekül besitzt C_{2v} -Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.11: Isomere des Dinitrosomethanids.

Für die korrespondierende Säure Dinitrosomethan wurden drei stationäre Punkte berechnet (siehe Abbildung 2.12). Das C-H-gebundene Molekül besitzt C_1 -Symmetrie und liegt energetisch um 19,410 kcal mol⁻¹ über dem *aci*-Dinitrosomethan. Das Molekül mit beiden Protonen an den Sauerstoff-Atomen der Nitrosogruppen besitzt C_{2v} -Symmetrie und liegt energetisch um 0,73 kcal mol⁻¹ über dem *aci*-Dinitrosomethan. Das *aci*-Dinitrosomethan besitzt C_s -Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.12: Isomere des Dinitrosomethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
C(NOH)NO ⁻	6-31G(d,p)	-298,512924	-298,479430	-298,514592
$C_{ m s}$	aug-cc-pvDZ	-298,591899	-298,558571	-298,593771
	aug-cc-pvTZ	-298,660913	-298,627592	-298,662693
<i>u</i> -CH(NO) ₂	6-31G(d,p)	-298,532355	-298,497883	-298,530641
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-298,607330	-298,573050	-298,605817
	aug-cc-pvTZ	-298,673529	-298,639292	-298,671969
s-CH(NO) ₂	6-31G(d,p)	-298,541555	-298,507052	-298,540105
C_{s}	aug-cc-pvDZ	-298,616123	-298,581938	-298,615128
	aug-cc-pvTZ	-298,682233	-298,648088	-298,681231
w-CH(NO)2	6-31G(d,p)	-298,551556	-298,517011	-298,549115
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-298,627999	-298,593711	-298,625822
	aug-cc-pvTZ	-298,694135	-298,659873	-298,691939
CH2(NO) ₂	6-31G(d,p)	-299,070263	-299,023822	-299,059027
C_1	aug-cc-pvDZ	-299,121635	-299,075403	-299,110966
	aug-cc-pvTZ	-299,189549	-299,143347	-299,178878
C(NOH) ₂	6-31G(d,p)	-299,095141	-299,046846	-299,081364
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-299,150800	-299,102563	-299,137024
	aug-cc-pvTZ	-299,222392	-299,174179	-299,208641
CH(NOH)NO	6-31G(d,p)	-299,102001	-299,054072	-299,087631
$C_{ m s}$	aug-cc-pvDZ	-299,155241	-299,107512	-299,141053
	aug-cc-pvTZ	-299,223916	-299,176244	-299,209810

 Tabelle 2.6:
 Absolute Energiewerte Dinitrosomethan/Dinitrosomethanid.

2.1.3.3 Trinitrosomethan/Trinitrosomethanid

Für Trinitrosomethanid wurden vier stationäre Punkte berechnet (siehe Abbildung 2.13). Der planare Übergangszustand mit C_{3h} -Symmetrie (NIMAG = 1) liegt energetisch um 1,506 kcal mol⁻¹ über dem Molekül mit C_1 -Symmetrie. Das Molekül mit C_3 -Symmetrie, dessen NO-Gruppen leicht propellerförmig verdreht sind, liegt energetisch um 0,629 kcal mol⁻¹ über dem Molekül mit C_1 -Symmetrie. Der Übergangszustand mit C_s -Symmetrie (NIMAG = 1) liegt energetisch um 0,323 kcal mol⁻¹ über dem Molekül mit C_1 -Symmetrie. Das Molekül mit C_1 -Symmetrie liegt energetisch am tiefsten.

Abbildung 2.13: Isomere des Trinitrosomethanids.

Für die korrespondierende Säure Trinitrosomethan wurden sechs stationäre Punkte berechnet (siehe Abbildung 2.14). Das C-H-gebundene Molekül besitzt C_1 -Symmetrie und liegt energetisch um 13,198 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan. Das *endo-s*-förmige *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 2,920 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 2,141 kcal mol⁻¹ über dem *u*-förmigen C_s . Das *exo-s*-förmige *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 2,141 kcal mol⁻¹ über dem *u*-förmigen C_s . Das *exo-s*-förmige *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 1,952 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan. Das *endo-w*-förmige *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 0,239 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan. Das *u*-förmige *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 0,239 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan. Das *u*-förmige *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 0,239 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan. Das *u*-förmige *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 0,239 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan. Das *u*-förmige *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 0,239 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan. Das *u*-förmigen *aci*-Trinitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 0,239 kcal mol⁻¹ über dem *u*-förmigen *aci*-Trinitrosomethan.

 $\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & \\ CH(NO)_3 \ C_1 & & endo-s-C(NOH)(NO)_2 \ C_s & & exo-w-C(NOH)(NO)_2 \ C_s \end{array}$

*exo-s-*C(NOH)(NO)₂ C_s

endo-w-C(NOH)(NO)₂ C_s

u-C(NOH)(NO)₂ C_s

Abbildung 2.14: Isomere des Trinitrosomethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
C(NO) ₃	6-31G(d,p)	-427,846179	-427,813408	-427,851295
$C_{3\mathrm{h}}$	Aug-cc-pvDZ	-427,939902	-427,908375	-427,945011
	Aug-cc-pvTZ	-428,031581	-428,000206	-428,036791
C(NO) ₃	6-31G(d,p)	-427,846169	-427,813403	-427,851314
C_3	Aug-cc-pvDZ	-427,939903	-427,907423	-427,946055
	Aug-cc-pvTZ	-428,031578	-427,999261	-428,038188
C(NO) ₃	6-31G(d,p)	-427,846691	-427,814858	-427,851942
$C_{ m s}$	Aug-cc-pvDZ	-427,941168	-427,909576	-427,946791
	Aug-cc-pvTZ	-428,032994	-428,001554	-428,038676
C(NO) ₃	6-31G(d,p)	-427,847153	-427,814260	-427,852308
C_1	Aug-cc-pvDZ	-427,942079	-427,909385	-427,947365
	Aug-cc-pvTZ	-428,033790	-428,001250	-428,039191
CH(NO) ₃	6-31G(d,p)	-428,346029	-428,301740	-428,341063
C_1	Aug-cc-pvDZ	-428,422429	-428,378308	-428,417838
	Aug-cc-pvTZ	-428,517392	-428,473232	-428,512729
endo-s-	6-31G(d,p)	-428,366778	-428,320748	-428,359541
C(NOH)(NO) ₂	Aug-cc-pvDZ	-428,441195	-428,395440	-428,434261
Cs	Aug-cc-pvTZ	-428,535938	$-428,490_{298}$	-428,529108
exo-w-	6-31G(d,p)	-428,368075	-428,322155	-428,361022
C(NOH)(NO) ₂	Aug-cc-pvDZ	-428,442427	-428,396828	-428,435592
$C_{ m s}$	Aug-cc-pvTZ	-428,537132	-428,491648	-428,530350
exo-s-	6-31G(d,p)	-428,365921	-428,320121	-428,359440
C(NOH)(NO) ₂	Aug-cc-pvDZ	-428,441764	-428,395955	-428,435909
$C_{ m s}$	Aug-cc-pvTZ	-428,536295	-428,490656	-428,530651
endo-w-	6-31G(d,p)	-428,372502	-428,326844	-428,366891
C(NOH)(NO) ₂	Aug-cc-pvDZ	-428,446650	-428,401068	-428,439448
$C_{ m s}$	Aug-cc-pvTZ	-428,540571	-428,495110	-428,533381
<i>u</i> -	6-31G(d,p)	-428,369922	-428,323999	-428,362522
C(NOH)(NO) ₂	Aug-cc-pvDZ	-428,446248	-428,400449	-428,439069
$C_{ m s}$	Aug-cc-pvTZ	-428,540747	-428,495134	-428,533762

 Tabelle 2.7: Absolute Energiewerte Trinitrosomethan/Trinitrosomethanid.

2.1.4 Nitromethane/Nitromethanide

2.1.4.1 Nitromethan/Nitromethanid

Nitromethanid besitzt C_{2v} -Symmetrie (siehe Abbildung 2.15).

 $CH_2NO_2^-C_{2v}$

Abbildung 2.15: Nitromethanid.

Für die korrespondierende Säure Nitromethan wurden drei stationäre Punkte berechnet (siehe Abbildung 2.16). Das Molekül mit jeweils einem Proton an jedem Sauerstoff-Atom besitzt C_1 -Symmetrie und liegt energetisch um 52,96 kcal mol⁻¹ über dem C-H-gebundenen Molekül. Das *aci*-Nitromethan besitzt ebenfalls C_1 -Symmetrie und liegt energetisch um 14,34 kcal mol⁻¹ über dem C-H-gebundenen Molekül. Das C-H-gebundene Molekül besitzt ebenfalls C_1 -Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.16: Isomere des Nitromethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
CH ₂ NO ₂ ⁻	6-31G(d,p)	-244,409447	-244,368675	-244,399032
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-244,480810	-244,440284	-244,470206
	aug-cc-pvTZ	-244,538873	-244,498379	-244,528258
CH(NO ₂ H ₂)	6-31G(d,p)	-244,921109	-244,868184	-244,900132
C_1	aug-cc-pvDZ	-244,969481	-244,916830	-244,949249
	aug-cc-pvTZ	-245,030075	-244,977404	-245,009614
CH ₂ (NO ₂ H)	6-31G(d,p)	-244,988924	-244,934636	-244,965762
C_1	aug-cc-pvDZ	-245,033265	-244,979219	-245,010305
	aug-cc-pvTZ	-245,094008	-245,040027	-245,071159
CH ₃ NO ₂	6-31G(d,p)	-245,013376	-244,958088	-244,992041
C_1	aug-cc-pvDZ	-245,054722	-244,999885	-245,032727
	aug-cc-pvTZ	-245,115210	-245,060307	-245,094017

 Tabelle 2.8: Absolute Energiewerte Nitromethan/Nitromethanid.

2.1.4.2 Dinitromethan/Dinitromethanid

Dinitromethanid besitzt C_{2v} -Symmetrie (siehe Abbildung 2.17).

CH(NO₂)₂ C_{2v} Abbildung 2.17: Dinitromethanid.

Für die korrespondierende Säure Dinitromethan wurden vier stationäre Punkte berechnet (siehe Abbildung 2.18). Das Molekül mit jeweils einem Proton an einem Sauerstoff-Atom der beiden Nitrogruppen besitzt C_1 -Symmetrie und liegt energetisch um 47,90 kcal mol⁻¹ über dem C-H-gebundenen Molekül. Es gibt zwei mögliche *aci*-Dinitromethane. Beide Moleküle sind planar und besitzen C_s -Symmetrie. Das Molekül, dessen Proton *exo*-ständig zur zweiten Nitrogruppe ist, liegt energetisch um 11,74 kcal mol⁻¹ über dem C-H-gebundenen Molekül. Das Molekül, dessen Proton *endo*-ständig zur zweiten Nitrogruppe ist, liegt energetisch um 11,74 kcal mol⁻¹ über dem C-H-gebundenen Molekül.

4,67 kcal mol⁻¹ über dem C-H-gebundenen Molekül. Das C-H-gebundene Molekül besitzt ebenfalls C_s -Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.18: Isomere des Dinitromethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
CH(NO ₂) ₂	6-31G(d,p)	-448,954131	-448,907156	-448,944004
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-449,057279	-449,010743	-449,047596
	aug-cc-pvTZ	-449,158888	-449,112454	-449,149226
C(NO ₂ H) ₂	6-31G(d,p)	-449,409541	-449,350921	-449,389210
C_1	aug-cc-pvDZ	-449,495719	-449,437376	-449,475719
	aug-cc-pvTZ	-449,599559	-449,541336	-449,579689
exo-	6-31G(d,p)	-449,471138	-449,411463	-449,449710
CH(NO ₂ H)NO ₂	aug-cc-pvDZ	-449,554146	-449,494727	-449,532971
$C_{ m s}$	aug-cc-pvTZ	-449,658320	-449,599034	-449,637309
endo-	6-31G(d,p)	-449,484195	-449,425371	-449,462021
CH(NO ₂ H)NO ₂	aug-cc-pvDZ	-449,566730	-449,507873	-449,544424
$C_{ m s}$	aug-cc-pvTZ	-449,670802	-449,612057	-449,648585
CH ₂ (NO ₂) ₂	6-31G(d,p)	-449,489927	-449,429507	-449,469885
$C_{ m s}$	aug-cc-pvDZ	-449,572894	-449,512799	-449,552170
	aug-cc-pvTZ	-449,676661	-449,616643	-449,656020

 Tabelle 2.9: Absolute Energiewerte Dinitromethan/Dinitromethanid.

2.1.4.3 Trinitromethan/Trinitromethanid

Für Trinitromethanid wurden drei stationäre Punkte berechnet (siehe Abbildung 2.19). Der planare Übergangszustand mit D_{3h} -Symmetrie (NIMAG = 3) liegt energetisch um 12,82 kcal mol⁻¹ über dem Molekül mit C_{2v} -Symmetrie. Das nicht planare Molekül mit D_3 -Symmetrie, dessen Nitrogruppen propellerförmig verdreht sind, liegt energetisch um 1,00 kcal mol⁻¹ über dem Molekül mit C_{2v} -Symmetrie. Das nicht planare Molekül mit C_{2v} -Symmetrie, bei dem eine der Nitrogruppen um 90° aus der Molekülebene gedreht ist, liegt energetisch am tiefsten.

Abbildung 2.19: Isomere des Trinitromethanids.

Für die korrespondierende Säure Trinitromethan wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.20). Das *aci*-Trinitromethan besitzt C_1 -Symmetrie und liegt energetisch um 7,92 kcal mol⁻¹ über dem C-H-gebundenen Trinitromethan mit C_3 -Symmetrie.

Abbildung 2.20: Isomere des Trinitromethans.

 Tabelle 2.10:
 Absolute Energiewerte Trinitromethan/Trinitromethanid.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
C(NO ₂) ₃	6-31G(d,p)	-653,432467	-653,384092	-653,420460
$D_{3\mathrm{h}}$	aug-cc-pvDZ	-653,569015	-653,521112	-653,557400
	aug-cc-pvTZ	-653,713903	-653,666233	-653,702479
C(NO ₂) ₃ ⁻	6-31G(d,p)	-653,446071	-653,394347	-653,437232
D_3	aug-cc-pvDZ	-653,583765	-653,532643	-653,575934
	aug-cc-pvTZ	-653,729116	-653,678208	-653,721325
C(NO ₂) ₃	6-31G(d,p)	-653,445291	-653,393479	-653,439016
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-653,584682	-653,533351	-653,577385
	aug-cc-pvTZ	-653,730063	-653,678950	-653,722911
CNOH(NO ₂) ₂	6-31G(d,p)	-653,944340	-653,880899	-653,924893
C_1	aug-cc-pvDZ	-654,066690	-654,002855	-654,047294
	aug-cc-pvTZ	-654,214570	-654,151142	-654,195524
CH(NO ₂) ₃	6-31G(d,p)	-653,957586	-653,892979	-653,938987
C_3	aug-cc-pvDZ	-654,079109	-654,014828	-654,060322
	aug-cc-pvTZ	-654,226796	-654,162692	-654,208138

2.1.5 Cyannitrosomethane/Cyannitrosomethanide

2.1.5.1 Cyannitrosomethan/Cyannitrosomethanid

Für Cyannitrosomethanid wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.21). Beide Moleküle besitzen C_s -Symmetrie. Das Molekül, dessen Nitrosogruppe *trans* zum Proton steht, liegt energetisch um 2,46 kcal mol⁻¹ über dem Molekül, dessen Nitrosogruppe *cis* zum Proton steht.

Abbildung 2.21: Isomere des Cyannitrosomethanids.

Für die korrespondierende Säure Cyannitrosomethan wurden vier stationäre Punkte berechnet (siehe Abbildung 2.22). Das Molekül mit jeweils einem Proton am Stickstoff-Atom der Cyanogruppe und einem Proton am Sauerstoff-Atom der Nitrosogruppe besitzt C_s -Symmetrie und liegt energetisch um 35,02 kcal mol⁻¹ über dem *NO-aci*-Cyannitrosomethan. Das *CN-aci*-Cyannitrosomethan, besitzt C_1 -Symmetrie und liegt energetisch um 25,59 kcal mol⁻¹ über dem *NO-aci*-Cyannitrosomethan. Das C-H- gebundene Cyannitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 16,06 kcal mol⁻¹ über dem *NO-aci*-Cyannitrosomethan. Das *NO-aci*-Cyannitrosomethan besitzt C_s -Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.22: Isomere des Cyannitrosomethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
trans-	6-31G(d,p)	-261,485610	-261,449675	-261,482720
CH(CN)NO ⁻	aug-cc-pvDZ	-261,548871	-261,513129	-261,546193
$C_{ m s}$	aug-cc-pvTZ	-261,609731	-261,573954	-261,606946
cis-	6-31G(d,p)	-261,489956	-261,454146	-261,486966
CH(CN)NO ⁻	aug-cc-pvDZ	-261,552730	-261,517194	-261,550046
$C_{ m s}$	aug-cc-pvTZ	-261,613658	-261,578068	-261,610863
C(CNH)NOH	6-31G(d,p)	-261,991797	-261,943169	-261,977605
$C_{ m s}$	aug-cc-pvDZ	-262,034888	-261,986519	-262,020924
	aug-cc-pvTZ	-262,099131	-262,050714	-262,084985
CH(CNH)NO	6-31G(d,p)	-262,008909	-261,961350	-261,994905
C_1	aug-cc-pvDZ	-262,050938	-262,003632	-262,037188
	aug-cc-pvTZ	-262,113869	-262,066530	-262,100007
CH ₂ (CN)NO	6-31G(d,p)	-262,027475	-261,979241	-262,013543
$C_{ m s}$	aug-cc-pvDZ	-262,066162	-262,018226	-262,052586
	aug-cc-pvTZ	-262,128930	-262,080908	-262,115195
CH(CN)NOH	6-31G(d,p)	-262,053028	-262,003373	-262,036728
$C_{ m s}$	aug-cc-pvDZ	-262,093437	-262,044005	-262,077393
	aug-cc-pvTZ	-262,156880	-262,107440	-262,140794

 Tabelle 2.11: Absolute Energiewerte Cyannitrosomethan/Cyannitrosomethanid.

2.1.5.2 Dicyannitrosomethan/Dicyannitrosomethanid

Dicyannitrosomethanid ist planar und besitzt C_s -Symmetrie (siehe Abbildung 2.23).

 $C(CN)_2 NO^- C_s$

Abbildung 2.23: Dicyannitrosomethanid.

Für die korrespondierende Säure Dicyannitrosomethan wurden drei stationäre Punkte berechnet (siehe Abbildung 2.24). Das *CN-aci*-Dicyannitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 21,91 kcal mol⁻¹ über dem *NO-aci*-Dicyannitrosomethan. Das C-H-gebundene Molekül besitzt ebenfalls C_s -Symmetrie und liegt energetisch um 19,23 kcal mol⁻¹ über dem *NO-aci*-Dicyannitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energetisch um 19,23 kcal mol⁻¹

Tabelle 2.12: Absolu	ute Energiewerte	Dicyannitrosome	than/Dic	vannitrosomethanid.
	2)			

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
C(CN) ₂ NO ⁻	6-31G(d,p)	-353,754919	-353,718360	-353,755822
$C_{ m s}$	aug-cc-pvDZ	-353,825259	-353,789001	-353,826553
	aug-cc-pvTZ	-353,906657	-353,870346	-353,907787
C(CNH)(CN)NO	6-31G(d,p)	-354,239487	-354,191824	-354,230551
$C_{ m s}$	aug-cc-pvDZ	-354,293247	-354,245844	-354,284561
	aug-cc-pvTZ	-354,376893	-354,329466	-354,368099
CH(CN) ₂ NO	6-31G(d,p)	-354,245159	-354,196984	-354,237083
$C_{ m s}$	aug-cc-pvDZ	-354,296408	-354,248545	-354,288748
	aug-cc-pvTZ	-354,380114	-354,332165	-354,372365
C(CN) ₂ NOH	6-31G(d,p)	-354,279126	-354,229055	-354,267028
$C_{ m s}$	aug-cc-pvDZ	-354,331135	-354,281312	-354,319363
	aug-cc-pvTZ	-354,414937	-354,365074	-354,403016

2.1.5.3 Cyandinitrosomethan/Cyandinitrosomethanid

Für Cyandinitrosomethanid wurden drei stationäre Punkte berechnet (siehe Abbildung 2.25). Das Molekül in *u*-Form besitzt C_{2v} -Symmetrie und liegt energetisch um 8,07 kcal mol⁻¹ über dem *w*-förmigen Molekül. Das *s*-förmige Molekül besitzt C_s -Symmetrie und liegt energetisch um 4,52 kcal mol⁻¹ über dem *w*-förmigen Molekül. Das *w*-förmige Molekül besitzt ebenfalls C_s -Symmetrie und liegt energetisch am tiefsten.

Für die korrespondierende Säure Cyandinitrosomethan wurden fünf stationäre Punkte berechnet (siehe Abbildung 2.26). Das CN-aci-Cyandinitrosomethan besitzt Cs-Symmetrie und liegt energetisch um 22,0 kcal mol⁻¹ über dem *w*-förmigen *NO-aci*-Cyandinitrosomethan. Das C-H-gebundene Molekül besitzt ebenfalls C_s-Symmetrie und liegt energetisch um 19,36 kcal mol⁻¹ über dem w-förmigen NO-aci-Cyandinitrosomethan. Das u-förmige NO-aci-Cyandinitrosomethan besitzt ebenfalls $C_{\rm s}$ -Symmetrie und liegt energetisch um 5,54 kcal mol⁻¹ über *NO-aci*-Cyandinitrosomethan. Das s-förmige NO-acidem *w*-förmigen Cyandinitrosomethan besitzt ebenfalls $C_{\rm s}$ -Symmetrie und liegt energetisch um 3,63 kcal mol⁻¹ über *w*-förmigen *NO-aci*-Cyandinitrosomethan. Das w-förmige NO-acidem Cyandinitrosomethan besitzt ebenfalls C_s-Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.26: Isomere des Cyandinitrosomethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
<i>u</i> -C(CN)(NO) ₂	6-31G(d,p)	-390,799956	-390,765491	-390,803396
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-390,881711	-390,847525	-390,885659
	aug-cc-pvTZ	-390,968338	-390,934179	-390,972133
s-C(CN)(NO)2	6-31G(d,p)	-390,805591	-390,770865	-390,808532
$C_{ m s}$	aug-cc-pvDZ	-390,887916	-390,853483	-390,891343
	aug-cc-pvTZ	-390,974408	-390,940018	-390,977788
$w-C(CN)(NO)_2^{-1}$	6-31G(d,p)	-390,812536	-390,777512	-390,814326
$C_{ m s}$	aug-cc-pvDZ	-390,896401	-390,861640	-390,898545
	aug-cc-pvTZ	-390,982892	-390,948178	-390,984987
C(CNH)(NO) ₂	6-31G(d,p)	-391,290130	-391,244493	-391,283827
$C_{ m s}$	aug-cc-pvDZ	-391,357145	-391,311743	-391,351069
	aug-cc-pvTZ	-391,446059	-391,400730	-391,440019
CH(CN)(NO) ₂	6-31G(d,p)	-391,297190	-391,251213	-391,291173
$C_{ m s}$	aug-cc-pvDZ	-391,360955	-391,315233	-391,355351
	aug-cc-pvTZ	-391,449692	-391,403994	-391,444213
и-	6-31G(d,p)	-391,325987	-391,278462	-391,315766
C(CN)(NOH)NO	aug-cc-pvDZ	-391,387579	-391,340204	-391,377623
$C_{ m s}$	aug-cc-pvTZ	-391,476171	-391,428831	-391,466245
<i>S</i> -	6-31G(d,p)	-391,324506	-391,276606	-391,315504
C(CN)(NOH)NO	aug-cc-pvDZ	-391,388949	-391,341215	-391,380024
$C_{ m s}$	aug-cc-pvTZ	-391,478228	-391,430558	-391,469282
<i>w</i> -	6-31G(d,p)	-391,331051	-391,282831	-391,321116
C(CN)(NOH)NO	aug-cc-pvDZ	-391,395697	-391,347670	-391,386042
$C_{ m s}$	aug-cc-pvTZ	-391,484728	-391,436759	-391,475071

 Tabelle 2.13: Absolute Energiewerte Cyandinitrosomethan/Cyandinitrosomethanid.

2.1.6 Cyannitromethane/Cyannitromethanide

2.1.6.1 Cyannitromethan/Cyannitromethanid

Cyannitromethanid ist planar und besitzt C_{2v} -Symmetrie (siehe Abbildung 2.27).

 $CH(CN)NO_2^- C_{2v}$

Abbildung 2.27: Cyannitromethanid.

Für die korrespondierende Säure Cyannitromethan wurden vier stationäre Punkte berechnet (siehe Abbildung 2.28). Das Molekül mit einem Proton am Stickstoff-Atom der Cyanogruppe und einem Proton am Sauerstoff-Atom der Nitrogruppe besitzt C_s -Symmetrie und liegt energetisch um 39,09 kcal mol⁻¹ über dem C-H-gebundenen Molekül. *CN-aci*-Cyannitromethan besitzt ebenfalls C_s -Symmetrie und liegt energetisch um 12,06 kcal mol⁻¹ über dem C-H-gebundenen Molekül. C_s -Symmetrie und liegt energetisch um 4,05 kcal mol⁻¹ über dem C-H-gebundenen Molekül. Das C-H-gebundenen Molekül besitzt ebenfalls C_s -Symmetrie und liegt energetisch am tiefsten.

 Tabelle 2.14:
 Absolute Energiewerte Cyannitromethan/Cyannitromethanid.

	D • C /		TT /	<u> </u>
Molekůl	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
CH(CN)NO ₂	6-31G(d,p)	-336,694991	-336,652790	-336,687871
$C_{2\mathrm{v}}$	Aug-cc-pvDZ	-336,770621	-336,728817	-336,763869
	Aug-cc-pvTZ	-336,849235	-336,807423	-336,842397
C(CNH)NO ₂ H	6-31G(d,p)	-337,164029	-337,110261	-337,147450
$C_{ m s}$	Aug-cc-pvDZ	-337,222559	-337,169189	-337,206407
	Aug-cc-pvTZ	-337,304268	-337,250864	-337,287956
CH(CNH)NO ₂	6-31G(d,p)	-337,211707	-337,157447	-337,193114
$C_{ m s}$	Aug-cc-pvDZ	-337,268530	-337,214588	-337,250256
	Aug-cc-pvTZ	-337,349364	-337,295422	-337,331034
CH(CN)NO ₂ H	6-31G(d,p)	-337,226497	-337,171505	-337,207180
$C_{ m s}$	Aug-cc-pvDZ	-337,281731	-337,227010	-337,262690
	Aug-cc-pvTZ	-337,362849	-337,308150	-337,343805
CH ₂ (CN)NO ₂	6-31G(d,p)	-337,234785	-337,180239	-337,214494
$C_{ m s}$	Aug-cc-pvDZ	-337,289637	-337,235408	-337,269708
	Aug-cc-pvTZ	-337,370318	-337,316023	-337,350256

2.1.6.2 Dicyannitromethan/Dicyannitromethanid

Dicyannitromethanid ist planar und besitzt C_{2v} -Symmetrie (siehe Abbildung 2.29).

 $C(CN)_2NO_2^-C_{2v}$

Abbildung 2.29: Dicyannitromethanid.

Für die korrespondierende Säure Dicyannitromethan wurden drei stationäre Punkte berechnet (siehe Abbildung 2.30). *CN-aci*-Dicyannitromethan besitzt C_1 -Symmetrie und liegt energetisch um 5,88 kcal mol⁻¹ über dem *NO-aci*-Dicyannitromethan. Das C-H-gebundene Molekül besitzt C_s -Symmetrie und liegt energetisch um 2,14 kcal mol⁻¹ über dem *NO-aci*-Dicyannitromethan. *NO-aci*-Dicyannitromethan besitzt ebenfalls C_s -Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.30: Isomere des Dicyannitromethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
C(CN) ₂ NO ₂ ⁻	6-31G(d,p)	-428,959132	-428,916219	-428,955652
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-429,042269	-428,999790	-429,039296
	aug-cc-pvTZ	-429,141527	-429,099022	-429,138418
C(CNH)(CN)NO ₂	6-31G(d,p)	-429,441776	-429,387278	-429,427572
C_1	aug-cc-pvDZ	-429,509498	-429,455327	-429,495685
	aug-cc-pvTZ	-429,611175	-429,556973	-429,597231
CH(CN) ₂ NO ₂	6-31G(d,p)	-429,449402	-429,394345	-429,435627
$C_{ m s}$	aug-cc-pvDZ	-429,514765	-429,460095	-429,501950
	aug-cc-pvTZ	-429,615943	-429,561192	-429,603202
C(CN) ₂ NO ₂ H	6-31G(d,p)	-429,453372	-429,398090	-429,438313
$C_{ m s}$	aug-cc-pvDZ	-429,519822	-429,464837	-429,505098
	aug-cc-pvTZ	-429,621400	-429,566427	-429,606606

 Tabelle 2.15: Absolute Energiewerte Dicyannitromethan/Dicyannitromethanid.

2.1.6.3 Cyandinitromethan/Cyandinitromethanid

Cyandinitromethanid ist planar und besitzt C_{2v} -Symmetrie (siehe Abbildung 2,31).

 $C(CN)(NO_2)_2^- C_{2v}$ Abbildung 2.31: Cyandinitromethanid.

Für die korrespondierende Säure Cyandinitromethan wurden drei stationäre Punkte berechnet (siehe Abbildung 2.32). *CN-aci*-Cyandinitromethan besitzt C_s -Symmetrie und liegt energetisch um 10,65 kcal mol⁻¹ über dem *NO*₂-*aci*-Cyandinitromethan. Das C-H-gebundene Molekül besitzt C_1 -Symmetrie und liegt energetisch um 2,95 kcal mol⁻¹ über dem *NO*₂-*aci*-Cyandinitromethan. *NO*₂-*aci*-Cyandinitromethan besitzt C_{2v} -Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.32: Isomere des Cyandinitromethans.

 Tabelle 2.16: Absolute Energiewerte Cyandinitromethan/Cyandinitromethanid.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
$C(CN)(NO_2)_2^{-}$	6-31G(d,p)	-541,209928	-541,162599	-541,203901
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-541,319608	-541,272777	-541,314416
	aug-cc-pvTZ	-541,441838	-541,395098	-541,436623
C(CNH)(NO ₂) ₂	6-31G(d,p)	-541,687977	-541,629118	-541,672119
$C_{ m s}$	aug-cc-pvDZ	-541,782240	-541,723772	-541,767205
	aug-cc-pvTZ	-541,907260	-541,848875	-541,892241
CH(CN)(NO ₂) ₂	6-31G(d,p)	-541,704381	-541,644541	-541,688944
C_1	aug-cc-pvDZ	-541,797886	-541,738366	-541,782877
	aug-cc-pvTZ	-541,922056	-541,863586	-541,904502
C(CN)(NO ₂)NO ₂ H	6-31G(d,p)	-541,709481	-541,650699	-541,691828
$C_{2\mathrm{v}}$	aug-cc-pvDZ	-541,802214	-541,743420	-541,784494
	aug-cc-pvTZ	-541,926877	-541,868197	-541,909208

2.1.7 Nitronitrosomethane/Nitronitrosomethanide

2.1.7.1 Nitronitrosomethan/Nitronitrosomethanid

Für Nitronitrosomethanid wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.33). Das *s*-förmige Molekül besitzt C_s -Symmetrie und liegt energetisch um 5,65 kcal mol⁻¹ über dem *w*-förmigen Molekül. Das *w*-förmigen Molekül besitzt ebenfalls C_s -Symmetrie.

Für die korrespondierende Säure Nitronitrosomethan wurden fünf stationäre Punkte berechnet (siehe Abbildung 2.34). Das Molekül mit einem Proton am Sauerstoff-Atom der Nitro- und einem Proton am Sauerstoff-Atom der Nitrosogruppe besitzt C_s -Symmetrie und liegt energetisch um 37,63 kcal mol⁻¹ über dem *endo*-ständigen *NO-aci*-Nitronitrosomethan. *NO₂-aci*-Nitronitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energetisch um 14,63 kcal mol⁻¹ über dem *endo*-ständigen *NO-aci*-Nitronitrosomethan. Das C-H-gebundene Molekül mit besitzt ebenfalls C_s -Symmetrie und liegt energetisch um 14,29 kcal mol⁻¹ über dem *endo*-ständigen *NO-aci*-Nitronitrosomethan, besitzt ebenfalls C_s -Symmetrie. Die freie Enthalpie dieses Moleküls liegt zwar um 0,20 kcal mol⁻¹ unter dem *endo*-Molekül, jedoch liegen Enthalpie und Energie um ca. 0,6 kcal mol⁻¹ über dem *endo*-Molekül. Das *endo*-ständige *NO-aci*-Nitronitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energie um ca. 0,6 kcal mol⁻¹ über dem *endo*-Molekül. Das *endo*-ständige *NO-aci*-Nitronitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energie um ca. 0,6 kcal mol⁻¹ über dem *endo*-Molekül. Das *endo*-ständige *NO-aci*-Nitronitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energie um ca. 0,6 kcal mol⁻¹ über dem *endo*-Molekül. Das *endo*-ständige *NO-aci*-Nitronitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energie um ca. 0,6 kcal mol⁻¹ über dem *endo*-Molekül. Das *endo*-ständige *NO-aci*-Nitronitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energie um ca. 0,6 kcal mol⁻¹ über dem *endo*-Molekül. Das *endo*-ständige *NO-aci*-Nitronitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energies ham tiefsten.

Abbildung 2.34: Isomere des Nitronitrosomethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
s-CH(NO)NO ₂	6-31G(d,p)	-373,747975	-373,707200	-373,742555
$C_{ m s}$	aug-cc-pvDZ	-373,836824	-373,796400	-373,831890
	aug-cc-pvTZ	-373,920895	-373,880554	-373,915974
<i>w</i> -	6-31G(d,p)	-373,756902	-373,716156	-373,751194
CH(NO)NO ₂ ⁻	aug-cc-pvDZ	-373,846208	-373,805865	-373,840974
$C_{ m s}$	aug-cc-pvTZ	-373,930201	-373,889917	-373,924978
C(NOH)NO ₂ H	6-31G(d,p)	-374,238282	-374,185261	-374,222479
C_{s}	aug-cc-pvDZ	-374,311590	-374,258666	-374,295634
	aug-cc-pvTZ	-374,398790	-374,345973	-374,382987
CH(NO)NO ₂ H	6-31G(d,p)	-374,283407	-374,230043	-374,265013
$C_{ m s}$	aug-cc-pvDZ	-374,351162	-374,298034	-374,332998
	aug-cc-pvTZ	-374,437768	-374,384705	-374,419637
CH ₂ (NO)NO ₂	6-31G(d,p)	-374,282573	-374,229262	-374,266851
$C_{ m s}$	aug-cc-pvDZ	-374,350657	-374,297618	-374,334276
	aug-cc-pvTZ	-374,436462	-374,383484	-374,420185
exo-	6-31G(d,p)	-374,306053	-374,251647	-374,287788
CH(NOH)NO ₂	aug-cc-pvDZ	-374,374096	-374,319949	-374,356068
$C_{ m s}$	aug-cc-pvTZ	-374,461143	-374,407067	-374,443278
endo-	6-31G(d,p)	-374,309273	-374,254989	-374,289928
CH(NOH)NO ₂	aug-cc-pvDZ	-374,375271	-374,321167	-374,356119
$C_{ m s}$	aug-cc-pvTZ	-374,462018	-374,407982	-374,442955

 Tabelle 2.17: Absolute Energiewerte Nitronitrosomethan/Nitronitrosomethanid.

2.1.7.2 Dinitrosonitromethan/Dinitrosonitromethanid

Für Dinitrosonitromethanid wurden sechs stationäre Punkte berechnet (siehe Abbildung 2.35). Der *u*-förmige Übergangszustand, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist, (NIMAG = 1) besitzt C_{2v} -Symmetrie und liegt energetisch um 10,67 kcal mol⁻¹ über dem *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Der *w*-förmige Übergangszustand, dessen Nitrogruppe in der Molekülebene liegt, (NIMAG = 1) besitzt ebenfalls C_{2v} -Symmetrie und liegt energetisch um 8,43 kcal mol⁻¹ über dem *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Der *s*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Der *s*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Der *s*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Der *s*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene liegt, (NIMAG = 1) besitzt ebenfalls C_{2v} -Symmetrie und liegt energetisch um 8,43 kcal mol⁻¹ über dem *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Der *s*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene liegt, (NIMAG = 1) besitzt *C*_s-

Symmetrie und liegt energetisch um 7,52 kcal mol⁻¹ über dem *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Der *u*-förmige Übergangszustand, dessen Nitrogruppe in der Molekülebene liegt, (NIMAG = 2) besitzt C_{2v} -Symmetrie und liegt energetisch um 7,16 kcal mol⁻¹ über dem *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Der *s*-förmige Übergangszustand, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist, (NIMAG = 1) besitzt C_s -Symmetrie und liegt energetisch um 6,16 kcal mol⁻¹ über dem *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Das *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Das *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Das *w*-förmigen Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Das *w*-förmige Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Das *w*-förmige Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist. Das *w*-förmige Molekül, dessen Nitrogruppe um 90° zur Molekülebene verdreht ist.

Abbildung 2.35: Isomere des Dinitrosonitromethanids.

Für die korrespondierende Säure Dinitrosonitromethan wurden drei stationäre Punkte berechnet (siehe Abbildung 2.36). NO_2 -aci-Dinitrosonitromethan ist planar und besitzt C_s -Symmetrie. Es liegt energetisch um 17,25 kcal mol⁻¹ über dem *NO-aci*-Dinitrosonitromethan. Das C-H-gebundene Molekül besitzt C_1 -Symmetrie und liegt energetisch um 10,47 kcal mol⁻¹ über dem *NO-aci*-Dinitrosonitromethan. *NO-aci*-Dinitrosonitromethan ist planar und besitzt C_s -Symmetrie. Es liegt energetisch am tiefsten.

C(NO)₂NOOH C_s

 $CH(NO)_2NO_2 C_1$

CNOHNONO₂ $C_{\rm s}$

Abbildung 2.36: Isomere des Dinitrosonitromethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
t90-u-	6-31G(d,p)	-503,044474	-503,006489	-503,044661
$C(NO)_2NO_2^-$	aug-cc-pvDZ	-503,156185	-503,118509	-503,156686
$C_{2\mathrm{v}}$	aug-cc-pvTZ	-503,266366	-503,228818	-503,266846
<i>w</i> -	6-31G(d,p)	-503,052262	-503,014198	-503,051386
$C(NO)_2NO_2^-$	aug-cc-pvDZ	-503,160972	-503,123248	-503,160494
$C_{2\mathrm{v}}$	aug-cc-pvTZ	-503,270782	-503,233228	-503,270415
<i>S</i> -	6-31G(d,p)	-503,053086	-503,015088	-503,053341
$C(NO)_2NO_2^-$	aug-cc-pvDZ	-503,161110	-503,123490	-503,162002
$C_{ m s}$	aug-cc-pvTZ	-503,270881	-503,233434	-503,271865
и-	6-31G(d,p)	-503,054968	-503,017953	-503,054533
$C(NO)_2NO_2^-$	aug-cc-pvDZ	-503,162584	-503,125948	-503,162617
$C_{2\mathrm{v}}$	aug-cc-pvTZ	-503,272303	-503,235838	-503,272442
t90-s-	6-31G(d,p)	-503,051038	-503,012884	-503,051448
$C(NO)_2NO_2^-$	aug-cc-pvDZ	-503,163340	-503,125455	-503,163974
$C_{ m s}$	aug-cc-pvTZ	-503,776617	-503,235593	-503,274046
t90-w-	6-31G(d,p)	-503,059754	-503,020404	-503,062269
$C(NO)_2NO_2^-$	aug-cc-pvDZ	-503,173294	-503,134154	-503,173891
$C_{2\mathrm{v}}$	aug-cc-pvTZ	-503,283200	-503,244224	-503,283855
C(NO) ₂ NOOH	6-31G(d,p)	-503,544404	-503,493374	-503,535208
$C_{ m s}$	aug-cc-pvDZ	-503,634367	-503,583598	-503,625448
	aug-cc-pvTZ	-503,746276	-503,695724	-503,737380
CH(NO) ₂ NO ₂	6-31G(d,p)	-503,553232	-503,502339	-503,544028
C_1	aug-cc-pvDZ	-503,644852	-503,594270	-503,636082
	aug-cc-pvTZ	-503,756744	-503,706306	-503,748190
CNOHNONO ₂	6-31G(d,p)	-503,575437	-503,523214	-503,563217
$C_{ m s}$	aug-cc-pvDZ	-503,664246	-503,612218	-503,652410
	aug-cc-pvTZ	-503,776617	-503,724704	-503,764875

 Tabelle 2.18: Absolute Energiewerte Dinitrosonitromethan/Dinitrosonitromethanid.

2.1.7.3 Dinitronitrosomethan/Dinitronitrosomethanid Dinitronitrosomethanid besitzt C_s -Symmetrie (siehe Abbildung 2.37).

 $C(NO)(NO_2)_2^- C_s$

Abbildung 2.37: Dinitronitrosomethanid.

Für die korrespondierende Säure Dinitronitrosomethan wurden drei stationäre Punkte berechnet (siehe Abbildung 2.38). NO_2 -aci-Dinitronitrosomethan besitzt C_1 -Symmetrie und liegt energetisch um 18,88 kcal mol⁻¹ über dem *NO-aci*-Dinitronitrosomethan. Das C-H-gebundene Molekül besitzt ebenfalls C_1 -Symmetrie und liegt energetisch um 13,12 kcal mol⁻¹ über dem NO_2 -aci-Dinitronitrosomethan besitzt C_s -Symmetrie und liegt energetisch am tiefsten.

Abbildung 2.38: Isomere des Dinitronitrosomethans.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
$C(NO)(NO_2)_2^{-}$	6-31G(d,p)	-578,256375	-578,211750	-578,252169
$C_{ m s}$	aug-cc-pvDZ	-578,382922	-578,337707	-578,380388
	aug-cc-pvTZ	-578,510679	-578,465659	-578,508234
C(NO)(NO ₂ H)NO ₂	6-31G(d,p)	-578,744583	-578,686940	-578,730103
C_1	aug-cc-pvDZ	-578,852143	-578,794712	-578,838366
	aug-cc-pvTZ	-578,982252	-578,92505	-578,968667
CH(NO)(NO ₂) ₂	6-31G(d,p)	-578,754644	-578,696940	-578,740992
C_1	aug-cc-pvDZ	-578,861083	-578,803665	-578,847861
	aug-cc-pvTZ	-578,990821	-578,933582	-578,977845
C(NOH)(NO ₂) ₂	6-31G(d,p)	-578,776617	-578,717787	-578,759871
$C_{ m s}$	aug-cc-pvDZ	-578,881679	-578,823047	-578,867398
	aug-cc-pvTZ	-579,012721	-578,954236	-578,998747

Tabelle 2.19: Absolute Energiewerte Dinitronitrosomethan/Dinitronitrosomethanid.

2.1.8 Cyannitronitrosomethan/Cyannitronitrosomethanid

Für Cyannitronitrosomethanid wurden zwei stationäre Punkte berechnet (siehe Abbildung 2.39). Beide Moleküle sind planar und besitzen C_s -Symmetrie. Das Molekül, dessen Nitroso-Sauerstoff-Atom *endo* zur Nitrogruppe steht, liegt energetisch um 4,15 kcal mol⁻¹ über dem Molekül, dessen Sauerstoff-Atom *exo* zur Nitrogruppe steht.

Abbildung 2.39: Isomere des Cyannitronitrosomethanids.

Für die korrespondierende Säure Cyannitronitrosomethan wurden vier stationäre Punkte berechnet (siehe Abbildung 2.40). *CN-aci*-Cyannitronitrosomethan besitzt C_1 -Symmetrie und liegt energetisch um 22,23 kcal mol⁻¹ über dem *NO-aci*-Cyannitronitrosomethan. Das C-H-gebundene Molekül besitzt ebenfalls C_1 -Symmetrie und liegt energetisch um 16,50 kcal mol⁻¹

über dem *NO-aci*-Cyannitronitrosomethan. Das *NO₂-aci*-Cyannitronitrosomethan besitzt C_s -Symmetrie und liegt energetisch um 12,88 kcal mol⁻¹ über dem *NO-aci*-Cyannitronitrosomethan besitzt ebenfalls C_s -Symmetrie und liegt energetisch am tiefsten.

Molekül	Basis Satz	E _{tot} /a.u.	H ₂₉₈ /a.u.	G ₂₉₈ /a.u.
endo-	6-31G(d,p)	-466,008932	-465,968009	-466,007902
C(CN)(NO)NO ₂ ⁻	aug-cc-pvDZ	-466,104640	-466,064109	-466,104339
$C_{ m s}$	aug-cc-pvTZ	-466,209212	-466,168744	-466,208829
exo-	6-31G(d,p)	-466,015550	-465,974396	-466,013969
C(CN)(NO)NO ₂	aug-cc-pvDZ	-466,112018	-466,071257	-466,110997
$C_{ m s}$	aug-cc-pvTZ	-466,216501	-466,175803	-466,215439
C(CNH)(NO)NO ₂	6-31G(d,p)	-466,492636	-466,440350	-466,481212
C_1	aug-cc-pvDZ	-466,573122	-466,521162	-466,562146
	aug-cc-pvTZ	-466,680144	-466,628262	-466,669148
CH(CN)(NO)NO ₂	6-31G(d,p)	-466,502593	-466,449768	-466,491843
C_1	aug-cc-pvDZ	-466,581297	-466,528799	-466,571408
	aug-cc-pvTZ	-466,688083	-466,635627	-466,678279
C(CN)(NO)NO ₂ H	6-31G(d,p)	-466,511934	-466,458335	-466,497945
$C_{ m s}$	aug-cc-pvDZ	-466,590697	-466,537301	-466,576907
	aug-cc-pvTZ	-466,697785	-466,644498	-466,684041
C(CN)(NOH)NO ₂	6-31G(d,p)	-466,531975	-466,477337	-466,517985
$C_{ m s}$	aug-cc-pvDZ	-466,610683	-466,556280	-466,597036
	aug-cc-pvTZ	-466,718129	-466,663811	-466,704568

 Tabelle 2.20:
 Absolute Energiewerte Cyannitronitrosomethan/Cyannitronitrosomethanid.

2.2 Struktur

2.2.1 Methan/Methanid

Methanid nimmt eine pyramidale Struktur ein (d(CH) = 1,099 Å, $\langle HCH = 109,7^{\circ}$).

Abbildung 2.41: Methanid. Ausgewählte Bindungslängen und -winkel in Å und °.

Methan nimmt eine tetraedrische Struktur ein (d(CH) = 1,088 Å, $\langle HCH = 109,5 \rangle$.

Abbildung 2.42: Methan. Ausgewählte Bindungslängen und -winkel in Å und °.

2.2.2 Cyanmethane/Cyanmethanide

Cyanmethanid ist nicht planar und besitzt C_s -Symmetrie. Die beiden Protonen liegen nicht in der Molekülebene (<HCH = 117.5°, d(CC) = 1,380 Å, d(CN) = 1,179, <CCN = 178,3°, $DA(HCCN) = 157,4^\circ$). Die nicht-planare Form ist der planaren Form um nur 0,03 kcal mol⁻¹ bevorzugt. Dicyanmethanid ist planar und besitzt C_{2v} -Symmetrie (d(CN) = 1,169 Å, d(CC) =1,391 Å, <CCC = 123,4°). Tricyanmethanid ist ebenfalls planar und besitzt D_{3h} -Symmetrie (d(CN) = 1,162 Å, d(CC) = 1,406 Å, <CCC = 120,0°). Werden Wasserstoff-Atome des Methanids durch Cyanogruppen substituiert, so bilden diese immer eine planare oder nahezu planare CCN-Einheit (<CCN > 175°). Je höher der CN-Substitutionsgrad wird, desto größer wird der Bindungsabstand zwischen den Kohlenstoff-Atomen (1,380 Å, 1,391 Å, 1,406 Å) und desto kleiner wird der C-N-Bindungsabstand (1,179 Å, 1,169 Å, 1,162 Å).

Abbildung 2.43: Cyanmethanide. Ausgewählte Bindungslängen und -winkel in Å und °.

Cyanmethan besitzt C_{3v} -Symmetrie (d(CN) = 1,149 Å, d(CC) = 1,455 Å, $\langle CCN = 180,0^{\circ}$). Dicyanmethan besitzt C_{2v} -Symmetrie (d(CN) = 1,147 Å, d(CC) = 1,463 Å, $\langle CCC = 113,1^{\circ}$). Tricyanmethan besitzt C_{3v} -Symmetrie (d(CN) = 1,147 Å, d(CC) = 1,473 Å, $\langle CCC = 111,4^{\circ}$, $\langle CCN = 178,8^{\circ}$). Werden Wasserstoff-Atome des Methans durch Cyanogruppen substituiert, so bilden diese immer eine nahezu planare bis planare CCN-Einheit ($\langle CCN > 178^{\circ}$). Je höher der CN-Substitutionsgrad wird, desto größer wird der Bindungsabstand zwischen den Kohlenstoff-Atomen (1,455 Å, 1,463 Å, 1,473 Å). Der C-N-Bindungsabstand bleibt jedoch – anders als bei den Cyanmethaniden– ungefähr gleich (1,149 Å, 1,147 Å, 1,147 Å).

Abbildung 2.44: Cyanmethane. Ausgewählte Bindungslängen und -winkel in Å und °.

2.2.3 Nitrosomethane/Nitrosomethanide

Nitrosomethanid ist planar und besitzt C_s -Symmetrie (d(NO) = 1,299 Å, d(CN) = 1,303 Å, <HCH = 120,7°, <HCN = 117,9°, <CNO = 118,9°). Dinitrosomethanid ist ebenfalls planar und besitzt C_{2v} -Symmetrie (d(NO) = 1,263 Å, d(CN) = 1,342 Å, <NCN = 117,4°, <CNO = 116,0°). Offenbar wird hier die elektrostatische Abstoßung durch die Bildung zweier intramolekularer C^{...}H^{...}O-Wasserstoffbrückenbindungen verringert, woraus sich maximale Resonanzstabilisierung ergibt. Trinitrosomethanid ist ebenfalls planar und besitzt C_1 - Symmetrie (d(NO) = 1,236, 1,237, 1,239 Å, d(CN) = 1,382, 1,383, 1,388 Å, <NCN = 110,7°, <CNO = 117,6°, DA(NCNN) = 163,3°). Je höher der NO-Substitutionsgrad wird, desto größer wird der C-N-Bindungsabstand (1,303, 1,342, 1,382, 1,383 Å) und desto kleiner wird der N-O-Bindungsabstand (1,299, 1,263, 1,236, 1,239 Å).

Abbildung 2.45: Nitrosomethanide. Ausgewählte Bindungslängen und -winkel in Å und °.

Nitrosomethan ist planar und besitzt C_s -Symmetrie (d(NO) = 1,401 Å, d(CN) = 1,265 Å, <HCH = 120,5°, <HCN = 116,6°, <CNO = 111,7°, <NOH = 103,1°). Dinitrosomethan ist ebenfalls planar und besitzt C_s -Symmetrie (d(NO) = 1,213 Å, d(NOH) = 1,369 Å, d(CNO) = 1,423 Å, d(CNOH) = 1,275 Å, <CNO = 112,6°, >CNOH = 112,0°, <NCN = 114,7°, <NOH = 103,9°). Trinitrosomethan liegt in der *aci*-Form vor. Es ist nicht planar und besitzt C_s -Symmetrie. Eine der Nitrosogruppen ist um 52,1° aus der Molekülebene gedreht (d(NO) = 1,194, 1,209 Å, d(NOH) = 1,360 Å, d(CNOH) = 1,280 Å, d(CNO) = 1,432, 1,469 Å, <CNOH = 112,9°, <CNO = 114,3°, <NCN = 121,8°, DA(ONCN) = 52,1°). Alle Nitrosomethane liegen in der *aci*-Form vor. Je höher der NO-Substitutionsgrad wird, desto größer wird der C-N-Bindungsabstand und desto kleiner wird der N-O-Bindungsabstand.

Abbildung 2.46: Nitrosomethane. Ausgewählte Bindungslängen und -winkel in Å und °.

2.2.4 Nitromethane/Nitromethanide

Nitromethanid ist planar und besitzt C_{2v} -Symmetrie (d(NO) = 1,281 Å, d(CN) = 1,335 Å, <HCH = 124,4°, <CNO = 120,3°, <ONO = 119,5°). Dinitromethanid ist ebenfalls planar und besitzt C_{2v} -Symmetrie (d(NO) = 1,240, 1,264 Å, d(CN) = 1,377 Å, d(OO) = 2,741 Å, <ONO = 121,8°, <NCN = 126,6°, <CNO = 115,0°). Offenbar wird hier –wie bei Dinitrosomethanid– die elektrostatische Abstoßung durch die Bildung zweier intramolekularer C^{...}H^{...}O- Wasserstoffbrückenbindungen verringert, woraus sich maximale Resonanzstabilisierung ergibt. Trinitromethanid ist nicht planar und besitzt C_{2v} -Symmetrie. Eine der Nitrogruppen ist um 90° aus der Molekülebene gedreht (d(NO) = 1,221, 1,236, 1,253 Å, d(OO) = 2,722 Å, d(CN) = 1,380, 1,473 Å, $\langle ONO = 123,1^{\circ}, 124,9^{\circ}, \langle NCN = 128,5^{\circ}, DA(ONCN) = 90,0^{\circ}$). Je höher der NO-Substitutionsgrad wird, desto größer wird der C-N-Bindungsabstand (1,335, 1,377, 1,380, 1,473 Å) und desto kleiner wird der N-O-Bindungsabstand.

Abbildung 2.47: Nitromethanide. Ausgewählte Bindungslängen und -winkel in Å und °.

Nitromethan ist nicht planar und besitzt C_1 -Symmetrie (d(NO) = 1,219 Å, d(CN) = 1,498 Å, <CNO = 117,2°, <ONO = 125,7°). Dinitromethan ist ebenfalls nicht planar und besitzt C_s -Symmetrie. Die beiden Nitrogruppen sind um 90,1° gegeneinander verdreht (d(NO) = 1,209, 1,215, 1,216 Å, d(CN) = 1,501, 1,516 Å, <ONO = 127,1°, 127,6°, <NCN = 110,5°, DA(ONCN) = 90,1°). Trinitromethan ist ebenfalls nicht planar und besitzt C_3 -Symmetrie. Die Nitrogruppen sind propellerförmig angeordnet (d(NO) = 1,207, 1,212 Å, d(CN) = 1,521 Å, <ONO = 128,6°, <NCN = 109,7°, <ONC = 113,5°, DA(ONCN) = 19,6°). Je höher der NO-Substitutionsgrad wird, desto größer wird der C-N-Bindungsabstand. Der N-O-Bindungsabstand bleibt jedoch nahezu gleich.

Abbildung 2.48: Nitromethane. Ausgewählte Bindungslängen und -winkel in Å und °.

2.2.5 Cyannitrosomethane/Cyannitrosomethanide

Cyannitrosomethanid ist planar und besitzt C_s -Symmetrie (d(NO) = 1,274 Å, d(CCN) = 1,163 Å, d(CNO) = 1,327 Å, d(CCN) = 1,407 Å, <CNO = 117,1°, <NCC = 120,2°, <CCN = 176,9°). Cyandinitrosomethanid ist ebenfalls planar und besitzt C_{2v} -Symmetrie (d(NO) = 1,246 Å, d(CN) = 1,155 Å, d(CC) = 1,429 Å, d(CN) = 1,364 Å, <CNO = 117,4°, <NCN = 114,4°, <CCN = 180,0). Dicyannitrosomethanid ist ebenfalls planar und besitzt C_s -Symmetrie (d(CCN) = 1,158, 1,159 Å, d(NO) = 1,251 Å, d(CNO) = 1,359 Å, d(CC)1,414, 1,419 Å, <CCN = 179,2°, 179,9°, <CCC = 119,2°, <CNO = 117,6°).

Abbildung 2.49: Cyannitrosomethanide. Ausgewählte Bindungslängen und -winkel in Å und °.

Cyannitrosomethan liegt in der *aci*-Form vor. Es ist planar und besitzt C_s -Symmetrie (*d*(NO) = 1,378 Å, *d*(CN) = 1,152 Å, *d*(CNO) = 1,276 Å, *d*(CCN) = 1,425 Å, <CNO = 111,3°, <NCC = 118,9°, <CCN = 176,6°). Dicyannitrosomethan liegt ebenfalls in der *aci*-Form vor und ist planar. Es besitzt C_s -Symmetrie (*d*(NO) = 1,358 Å, *d*(CNO) = 1,288 Å, *d*(CC) = 1,431, 1,434 Å, *d*(CCN) = 1,150, 1,151 Å, <CNO = 112,8°, <CCN = 178,1°, 179,6°, <CCNO = 117,3°). Cyandinitrosomethanid liegt ebenfalls in der *aci*-Form vor und ist planar. Es besitzt C_s -Symmetrie (*d*(CCN) = 1,151 Å, *d*(CC) = 1,428 Å, *d*(NO) = 1,201, 1,352 Å, *d*(CNO) = 1,284, 1,458 Å, <CCN = 178,4°, <NCN = 112,2°, <CNO = 113,6°, 114,0°).

Abbildung 2.50: Cyannitrosomethane. Ausgewählte Bindungslängen und -winkel in Å und °.

2.2.6 Cyannitromethane/Cyannitromethanide

Cyannitromethanid ist planar und besitzt C_s -Symmetrie (d(NO) = 1,257, 1,264 Å, d(CCN) = 1,164 Å, d(CC) = 1,393 Å, d(CNO) = 1,365 Å, $<ONO = 121,3^{\circ}, <NCCN = 122,3^{\circ}, <CCN = 175,6^{\circ}$). Dicyannitromethanid ist ebenfalls planar und besitzt C_{2v} -Symmetrie (d(CC) = 1,404 Å, d(CCN) = 1,159 Å, d(CNO) = 1,397 Å, d(NO) = 1,245 Å, $<ONO = 122,8^{\circ}, <CCN = 177,0^{\circ}, <CCC = 121,0^{\circ}$). Cyandinitromethanid ist ebenfalls planar und besitzt C_{2v} -Symmetrie (d(CCN) = 1,157 Å, d(CC) = 1,406 Å, d(CNO) = 1,407 Å, d(NO) = 1,232, 1,247 Å, d(OO) = 2,650 Å, $<ONO = 122,8^{\circ}, <NCN = 124,1^{\circ}$).

Abbildung 2.51: Cyannitromethanide. Ausgewählte Bindungslängen und -winkel in Å und °.

Cyannitromethan ist nicht planar und besitzt C_s -Symmetrie (d(NO) = 1,213 Å, d(CCN) = 1,148 Å, d(CNO) = 1,531 Å, d(CC) = 1,453 Å, $<ONO = 127,2^{\circ}$, $<NCC = 110^{\circ}$, $<CCN = 179,0^{\circ}$, $DA(ONCC) = 90,0^{\circ}$). Dicyannitromethan liegt in der *aci*-Form vor und ist planar. Es besitzt C_s -Symmetrie (d(CN) = 1,152 Å, d(NO) = 1,216, 1,388 Å, d(CC) = 1,414, 1,415 Å, d(CNO) = 1,335 Å, $<CCN = 177,7^{\circ}$, 178,0, $<ONO = 118,1^{\circ}$, $<CCC = 121,5^{\circ}$). Cyandinitromethan liegt ebenfalls in der *aci*-Form vor und ist planar. Es besitzt C_{2v} -Symmetrie (d(CCN) = 1,152 Å, d(NO) = 1,204, 1,210, 1,257, 1,343 Å, d(CC) = 1,47 Å, d(CNO) = 1,364, 1,210 Å, d(OO) = 2,458 Å, $<CCN = 179,6^{\circ}$, $<NCN = 122,0^{\circ}$, $<ONO = 117,4^{\circ}, 123,4^{\circ}$).

Abbildung 2.52: Cyannitromethane. Ausgewählte Bindungslängen und -winkel in Å und °.

2.2.7 Nitronitrosomethane/Nitronitrosomethanide

Nitronitrosomethanid ist planar und besitzt C_s -Symmetrie (d(), <ONO = 121,8°, <NCN = 120,7°, <CNO = 115,8°). Dinitrosonitromethanid ist nicht planar. Eine der beiden Nitrogruppen ist um 87° aus der Molekülebene gedreht. Es besitzt C_s -Symmetrie (d(), <ONO = 124,8°, <NCN = 122,3°, <CNO = 119,0°, DA(ONCN) = 87,0°).

Abbildung 2.53: Nitronitrosomethanide. Ausgewählte Bindungslängen und -winkel in Å und °.

Nitronitrosomethan liegt in der *aci*-Form vor und ist planar. Es besitzt C_s -Symmetrie (d(NOH) = 1,339 Å, d(ONO) = 1,214, 1,242 Å, d(CN) = 1,276, 1,457 Å, <ONO = 124,7°, <CNOH = 121,5°, <NCN = 126,5°). Dinitrosonitromethan liegt ebenfalls in der *aci*-Form vor, ist jedoch nicht planar. Die Nitrogruppe ist um 38,9° aus der Molekülebene gedreht. Es besitzt C_1 -Symmetrie (d(ONO) = 1,212, 1,218 Å, d(CNO) = 1,229, 1,325 Å, d(CN) = 1,290, 1,406, 1,482 Å, d(OO) = 2,534 Å, <ONO = 127,4°, <NCN = 131,1°, <CNOH = 181,2°, <NCNO = 13,9°, DA(ONCN) = 38,9°). Dinitronitrosomethan liegt ebenfalls in der *aci*-Form vor und ist nicht planar. Eine der Nitrogruppen ist um 95,0° aus der Molekülebene gedreht. Es besitzt C_s -Symmetrie (d(ONO) = 1,207, 1,212, 1,213, 1,238 Å, d(NOH) = 1,334 Å, $d(CNO_2)$ = 1,459, 1,488 Å, d(CNO) = 1,265 Å, <ONO = 126,0°, 128,0°, <CNOH = 121,8°, <NCN = 117,5°, DA(ONCN) = 95,0°).

Abbildung 2.54: Nitronitrosomethane. Ausgewählte Bindungslängen und -winkel in Å und °.

2.2.8 Cyannitronitrosomethan/Cyannitronitrosomethanid

Cyannitronitrosomethanid ist planar und besitzt C_s -Symmetrie (d(CCN) = 1,156 Å, d(NO) = 1,250 Å, d(ONO) = 1,232, 1,243 Å, d(CC) = 1,414 Å, $d(CNO_2) = 1,422$ Å, d(CNO) = 1,355 Å, $<ONO = 122,9^\circ$, $<NCN = 117,6^\circ$, $<CCN = 175,9^\circ$, $<CNO = 117,3^\circ$).

Abbildung 2.55: Cyannitronitrosomethanid. Ausgewählte Bindungslängen und -winkel in Å und °.

Cyannitronitrosomethan liegt in der *aci*-Form vor und ist ebenfalls planar. Es besitzt C_s -Symmetrie (d(NOH) = 1,355 Å, d(CCN) = 1,151 Å, d(CC) 1,422 Å, d(ONO) = 1,209, 1,218 Å, $d(CNO_2) = 1,496$ Å, d(CNOH) = 1,272 Å, <ONO = 127,3°, <CNOH = 113,6°, <CCN = 176,6°, <CCNOH = 127,3°).

Abbildung 2.56: Cyannitronitrosomethan. Ausgewählte Bindungslängen und -winkel in Å und °.

2.3 Resonanzstabilisierung

Strukturelle Parameter wie die relativ kurzen C-CN-, C-NO- und C-NO₂-Bindungsabstände und die Planarität der Methanide deuten darauf hin, dass das freie *p*-Elektronenpaar des zentralen Kohlenstoff-Atoms über das ganze Anion delokalisiert ist (mesomeriestabilisiertes π -Bindungssystem) (Abbildung 2.57). Der Mesomerieeffekt nimmt entlang der Substitutionsreihe CN < NO < NO₂ zu, was MO-Theorie, klassische VB-Resonanzstrukturen und Elektronen-Ladungs-Argumente vermuten lassen. Schließlich ist das Sauerstoff-Atom der NO-Gruppe elektronegativer als das Stickstoff-Atom der CN-Gruppe und zwei Sauerstoff-Atome verstärken dementsprechend den Mesomerieeffekt.

Abbildung 2.57: Delokalisierung des freien *p*-Elektronenpaars am zentralen Kohlenstoff-Atom bei (a) einfach substituierten Methaniden, (b) doppelt substituierten Methaniden und (c) dreifach substituierten Methaniden.

2.4 Säurestärken in der Gasphase

2.4.1 Cyanmethane/Cyanmethanide

Je höher der Substitutionsgrad der C-H-gebundenen Cyanmethane ist, desto höher ist auch die Säurestärke, da die Anionen mit steigendem Substitutionsgrad stärker resonanzstabilisiert sind $(CH_3^- -39,85 \text{ a.u.}; CH_2CN^- -132,20 \text{ a.u.}; CH(CN)_2^- -224,52 \text{ a.u.}; C(CN)_3^- -316,82 \text{ a.u.}).$

Abbildung 2.58: Gasphasenaciditäten der Cyanmethane.

Tabelle 2.21: Gasphasenaciditäten der Cyanmethane.

dG/kJ mol ⁻¹	Reaktion	Label
1209,08	$HC(CN)_3 \rightarrow C(CN)_3^-$	CN3
1351,85	$CH_2(CN)_2 \rightarrow HC(CN)_2^-$	CN2
1523,61	$CH_3CN \rightarrow H_2CCN^-$	CN
1704,40	$CH_4 \rightarrow CH_3^-$	CH4

Auch bei den *aci*-Cyanmethanen steigt die Säurestärke mit wachsendem Substitutionsgrad aufgrund wachsender Resonanzstabilisierung. Die Werte der *aci*-Cyanmethane liegen jedoch leicht unter denen der C-H-gebundenen Cyanmethanide, sie sind also etwas saurer. Dies liegt wohl daran, dass die *aci*-Säuren im Falle der Cyano-Substitution weniger stabil sind als die C-H-gebundenen Derivate.

Abbildung 2.59: Gasphasenaciditäten der aci-Cyanmethane.

dG/kJ mol ⁻¹	Reaktion	Label
1206,02	$C(CNH)(CN)_2 \rightarrow C(CN)_3^-$	CNH_CN2
1303,42	$HC(CNH)CN \rightarrow HC(CN)_2$	CNH_CN
1431,05	$CH_2CNH \rightarrow H_2CCN^-$	CNH
1704,40	$CH_4 \rightarrow CH_3^-$	CH4

Tabelle 2.22: Gasphasenaciditäten der aci-Cyanmethane.

2.4.2 Nitrosomethane/Nitrosomethanide

Bei den C-H-gebundenen Nitrosomethanen steigt die Säurestärke ebenfalls mit wachsendem Substitutionsgrad an. Auch hier werden die Anionen stärker resonanzstabilisiert ($CH_3^--39,85$ a.u.; $CH_2NO^--169,29$ a.u.; $CH(NO)_2^--298,69$ a.u.; $C(NO)_3^--428,04$ a.u.).

Abbildung 2.60: Gasphasenaciditäten der Nitrosomethane.

dG/kJ mol ⁻¹	Reaktion	Label
1217,00	$HC(NO)_3 \rightarrow C(NO)_3^-$	NO3
1252,18	$HC(NO)_2 \rightarrow HC(NO)_2^{-1}$	NO2
1427,55	$CH_3NO \rightarrow H_2CNO^-$	NO
1704,4	$CH_4 \rightarrow CH_3^-$	CH4

Tabelle 2.23: Gasphasenaciditäten der Nitrosomethane.

Auch bei den *aci*-Nitrosomethanen steigt die Säurestärke mit wachsendem Substitutionsgrad aufgrund wachsender Resonanzstabilisierung. Die Werte liegen jedoch über denen der C-H-gebundenen Nitrosomethanide, sie sind also weniger sauer. Dies liegt wohl daran, dass die *aci*-Säuren im Falle der Nitroso-Substitution stabiler sind als die C-H-gebundenen Derivate. Die Werte bei 1407,11 kJ mol⁻¹ und 1410,18 kJ mol⁻¹ entsprechen dem doppelt *aci*-gebundenen C(NOH)₂ und dem C(NOH)NO⁻.

Abbildung 2.61: Gasphasenaciditäten der aci-Nitrosomethane.

dG/kJ mol ⁻¹	Reaktion	Label
1272,22	$C(NOH)(NO)_2 \rightarrow C(NO)_3$	NOH_NO2
1333,39	$HC(NOH)NO \rightarrow HC(NO)_2$	NOH_NO
1407,11	$C(NOH)_2 \rightarrow C(NOH)NO^-$	NOH_NOH
1410,18	$HC(NOH)NO \rightarrow C(NOH)NO^{-}$	NOH_NO
1479,92	$H_2CNOH \rightarrow H_2CNO^-$	NOH
1704,40	$CH_4 \rightarrow CH_3^-$	CH4

Tabelle 2.24: Gasphasenaciditäten der aci-Nitrosomethane.

2.4.3 Nitromethane/Nitromethanide

Bei den C-H-gebundenen Nitromethanen steigt die Säurestärke ebenfalls mit wachsendem Substitutionsgrad an. Auch hier werden die Anionen aufgrund höherer Resonanzstabilisierung stabiler (CH_3^- -39,85 a.u.; $CH_2NO_2^-$ -244,53 a.u.; $CH(NO_2)_2^-$ -449,15 a.u; $C(NO_2)_3^-$ -653,72 a.u.).

Abbildung 2.62: Gasphasenaciditäten der Nitromethane.

dG/kJ mol ⁻¹	Reaktion	Label
1247,69	$HC(NO_2)_3 \rightarrow C(NO2)_3^-$	(NO2)3
1304,31	$H_2C(NO_2)_2 \rightarrow HC(NO_2)_2^-$	(NO2)2
1459,12	$H_3CNO_2 \rightarrow H_2CNO_2^-$	NO2
1704,40	$CH_4 \rightarrow CH_3^-$	CH4

Auch bei den *aci*-Nitromethanen steigt die Säurestärke mit wachsendem Substitutionsgrad aufgrund wachsender Resonanzstabilisierung. Entgegen der Erwartung liegen die Werte jedoch –anders als bei den *aci*-Cyanmethanen– über denen der C-H-gebundenen Nitromethanide, sie sind also weniger sauer. Die Werte bei 1103,90 kJ mol⁻¹ und 1237,52 kJ mol⁻¹ entsprechen dem doppelt *aci*-gebundenen C(NO₂H)₂ bzw. dem HCNO₂H₂.

Abbildung 2.63: Gasphasenaciditäten der aci-Nitromethane.

dG/kJ mol ⁻¹	Reaktion	Label
1103,90	$C(NO_2H)_2 \rightarrow HC(NO_2)_2^-$	(NO2H)2
1214,57	$C(NO_2H)(NO_2)_2 \rightarrow C(NO_2)_3$	NO2H_(NO2)2
1237,52	$HCNO_2H_2 \rightarrow H_2CNO_2^-$	NO2H2
1284,79	$HC(NO_2H)NO_2 \rightarrow HC(NO_2)_2^{-1}$	NO2H_NO2
1399,11	$H_2CNO_2H \rightarrow H_2CNO_2^-$	NO2H
1704,40	$CH_4 \rightarrow CH_3^-$	CH4

Tabelle 2.26: Gasphasenaciditäten der aci-Nitromethane.
2.4.4 Einfach substituierte Methane

Bei den einfach substituierten C-H-gebundenen Methanderivaten nimmt die Säurestärke in der Reihe CN < NO $_2$ < NO zu.

Abbildung 2.64: Gasphasenaciditäten der einfach substituierten Methane.

Tabelle 2.27: Gasphasenaciditäten der einfach substituierten Methane.

dG/kJ mol ⁻¹	Reaktion	Label
1427,55	$H_3CNO \rightarrow H_2CNO^-$	NO
1459,12	$H_3CNO_2 \rightarrow H_2CNO_2^-$	NO2
1523,61	$H_3CCN \rightarrow H_2CCN^-$	CN

Bei den einfach substituierten *aci*-Methanderivaten nimmt die Säurestärke in der Reihe NOH < CNH < NO₂H zu. Der Wert bei 1237,52 kJ mol⁻¹ entspricht dem doppelt *aci*-gebundenen HCNO₂H₂. Diese Säure ist relativ stark, da sie energetisch sehr unstabil ist (-245,01 a.u.). Das *aci*-Nitrosomethan ist allerdings energetisch stabiler als das C-H-gebundene Nitrosomethan, wogegen die C-H-gebundenen CN- und NO₂-Methylderivate energetisch stabiler sind. Aus diesem Grund ist die Zunahme der Säurestärke in der Reihe CN < NOH < NO₂ richtiger. Dies stimmt auch mit der Zunahme der Mesomeriestabilisierung der Anionen besser überein.

Abbildung 2.65: Gasphasenaciditäten der einfach substituierten aci-Methane.

dG/kJ mol ⁻¹	Reaktion	Label
1237,52	$HCNO_2H_2 \rightarrow H_2CNO_2^-$	NO2H2
1399,11	$H_2CNO_2H \rightarrow H_2CNO_2^-$	NO2H
1431,05	$H_2CCNH \rightarrow H_2CCN^-$	CNH
1479,92	$H_2CNOH \rightarrow H_2CNO^-$	NOH

Tabelle 2.28: Gasphasenaciditäten der einfach substituierten aci-Methane.

2.4.5 Doppelt substituierte Methane

Bei den doppelt substituierten C-H-gebundenen Methylderivaten steigt die Säurestärke in der Reihe $(CN)_2 < CNNO_2 < (NO_2)_2 < CNNO < NONO_2 < (NO)_2$. Diese Reihe stimmt auch mit den einfach substituierten Säuren überein. Die Säuren mit zwei unterschiedlichen Substituenten liegen zwischen denen mit zwei gleichen Substituenten.

Abbildung 2.66: Gasphasenaciditäten doppelt substituierter Methane.

dG/kJ mol ⁻¹	Reaktion	Label
1252,18	$H_2C(NO)_2 \rightarrow HC(NO)_2^-$	А
1273,89	$H_2C(NO)NO_2 \rightarrow HC(NO)NO_2^-$	В
1297,85	$H_2C(CN)NO \rightarrow HC(NO)CN^-$	С
1304,31	$H_2C(NO_2)_2 \rightarrow HC(NO_2)_2^-$	D
1307,11	$H_2C(CN)NO_2 \rightarrow HC(CN)NO_2^-$	Е
1351,85	$H_2C(CN)_2 \rightarrow HC(CN)_2^-$	F

Tabelle 2.29: Gasphasenaciditäten doppelt substituierter Methane.

Bei den doppelt substituierten aci-Methanen ist keine bestimmte Ordnung zu erkennen.

Abbildung 2.67: Gasphasenaciditäten doppelt substituierter aci-Methane.

Tabelle 2.30: Gasphasenaciditäten doppelt substituierter aci-Methane.

dG/kJ mol ⁻¹	Reaktion	Label
1103,90	$C(NO_2H)_2 \rightarrow HC(NO_2)_2^-$	А
1176,23	$C(NOH)NO_2H \rightarrow HC(NO)NO_2^{-1}$	В
1218,53	$C(CNH)NOH \rightarrow HC(CN)NO^{-}$	С
1257,97	$HC(CNH)NO \rightarrow HC(CN)NO^{-}$	D
1272,45	$HC(NO)NO_2H \rightarrow HC(NO)NO_2^{-1}$	E
1284,79	$HC(NO_2H)NO_2 \rightarrow HC(NO_2)_2^{-1}$	F
1303,42	$HC(CNH)CN \rightarrow HC(CN)_2$	G
1333,39	$HC(NOH)NO \rightarrow HC(NO)_2^{-1}$	Н
1333,67	$HC(NOH)NO_2 \rightarrow HC(NO)NO_2^{-1}$	Ι
1365,06	$HC(CN)NOH \rightarrow HC(CN)NO^{-}$	Κ
1407,11	$C(NOH)_2 \rightarrow C(NOH)NO^-$	L
1410,18	$HC(NOH)NO \rightarrow C(NOH)NO^{-1}$	Μ

2.4.6 Dreifach substituierte Methane

Bei den dreifach substituierten C-H-gebundenen Methanen steigt die Säurestärke in der Reihe $(NO_2)_3 < (NO)_3 < (CN)_3 < (NO)(NO_2)_2 < NO(CN)_2 < (NO)_2NO_2 < CN(NO)NO_2 < CN(NO)_2$ an.

Abbildung 2.68: Gasphasenaciditäten dreifach substituierter Methane.

Tabelle 2.31: Gasphasenacid	itäten dreifach	substituierter	Methane.
-----------------------------	-----------------	----------------	----------

dG/kJ mol ⁻¹	Reaktion	Label
1179,42	$HC(CN)(NO)_2 \rightarrow C(CN)(NO)_2^{-1}$	А
1188,91	$HC(CN)(NO)NO_2 \rightarrow C(CN)(NO)NO_2^{-1}$	В
1192,83	$HC(NO)_2NO_2 \rightarrow C(NO)_2NO_2^-$	С
1193,47	$HC(CN)_2NO \rightarrow C(CN)_2NO^-$	D
1206,69	$HC(NO)(NO_2)_2 \rightarrow C(NO)(NO_2)_2^{-1}$	Е
1209,08	$HC(CN)_3 \rightarrow C(CN)_3^-$	F
1217,00	$HC(NO)_3 \rightarrow C(NO)_3$	G
1247,69	$HC(NO_2)_3 \rightarrow C(NO_2)_3^{-1}$	Н

Bei den dreifach substituierten aci-Methanen ist keine bestimmte Ordnung zu erkennen.

Abbildung 2.69: Gasphasenaciditäten dreifach substituierter aci-Methane.

dG/kJ mol ⁻¹	Reaktion	Label
1164,45	$C(NO)_2NO_2H \rightarrow C(NO)_2NO_2^-$	А
1164,94	$C(CNH)(NO)NO_2 \rightarrow C(CN)(NO)NO_2^{-1}$	В
1168,41	$C(CNH)(NO)_2 \rightarrow C(CN)(NO)_2^{-1}$	С
1182,27	$C(CNH)(CN)NO \rightarrow C(CN)_2NO^-$	D
1182,59	$C(NO)(NO_2)NO_2H \rightarrow C(NO)(NO_2)_2$	E
1202,95	$C(CN)_2NO_2H \rightarrow C(CN)_2NO_2^{-1}$	F
1204,04	$C(CN)(NO)NO_2H \rightarrow C(CN)(NO)NO_2^-$	G
1206,02	$C(CNH)(CN)_2 \rightarrow C(CN)_3^-$	Н
1214,49	$C(CN)(NO_2H)NO_2 \rightarrow C(CN)(NO_2)_2$	Ι
1214,57	$C(NO_2H)(NO_2)_2 \rightarrow C(NO_2)_3$	Κ
1236,64	$C(NOH)(NO)NO_2 \rightarrow C(NO)_2NO_2^{-1}$	L
1253,92	$C(CN)(NOH)NO_2 \rightarrow C(CN)(NO)NO_2^{-1}$	М
1260,44	$C(CN)(NOH)NO \rightarrow C(CN)(NO)_2$	Ν
1261,56	$C(NOH)(NO_2)_2 \rightarrow C(NO)(NO_2)_2$	0
1272,22	$C(NOH)(NO)_2 \rightarrow C(NO)_3$	Р
1273,95	$C(CN)_2(NOH) \rightarrow C(CN)_2NO^-$	Q

 Tabelle 2.32: Gasphasenaciditäten dreifach substituierter aci-Methane.

3 ZUSAMMENFASSUNG

Mit Hilfe des Grimmschen Hydridverschiebungssatzes gelangt man vom Methanid zur Klasse der resonanzstabilisierten nichtlinearen Pseudohalogenide des Typs $[H_2CR^1]^-$, $[HCR^1R^2]^-$ und $[CR^1R^2R^3]^-$ mit $R^{1,2,3} = CN$, NO, NO₂ sowie alle möglichen Permutationen von $R^{1,2,3}$.

Rechnungen ergaben, dass die C-H-Form für alle Methanide die energetisch stabilste ist. Bei den Säuren verhält es sich für die CN- und NO₂-substituierten Moleküle ebenso. Hat jedoch ein Molekül eine oder mehrere NO-Gruppen als Substituent, ist die *aci*-Form, bei der das Proton am Sauerstoff-Atom der NO-Gruppe gebunden ist, energetisch begünstigt.

Werden Wasserstoff-Atome des Methanids durch Cyanogruppen substituiert, so bilden diese immer eine planare oder nahezu planare CCN-Einheit ($\langle CCN \rangle 175^\circ$). Je höher der CN-Substitutionsgrad wird, desto größer wird der Bindungsabstand zwischen den Kohlenstoff-Atomen und desto kleiner wird der C-N-Bindungsabstand. Werden Wasserstoff-Atome des Methans durch Cyanogruppen substituiert, so bilden diese ebenfalls immer eine nahezu planare bis planare CCN-Einheit ($\langle CCN \rangle 178^\circ$). Je höher der CN-Substitutionsgrad wird, desto größer wird der Bindungsabstand zwischen den Kohlenstoff-Atomen. Der C-N-Bindungsabstand bleibt jedoch bei den Cyanmethanen –anders als bei den Cyanmethaniden– ungefähr gleich.

Je höher der NO-Substitutionsgrad bei den Nitrosomethaniden wird, desto größer wird der C-N-Bindungsabstand und desto kleiner wird der N-O-Bindungsabstand. Ebenso verhält es sich bei den Nitrosomethanen, je höher der NO-Substitutionsgrad wird, desto größer wird der C-N-Bindungsabstand und desto kleiner wird der N-O-Bindungsabstand.

Auch bei den Nitromethaniden wird der C-N-Bindungsabstand größer und der N-O-Bindungsabstand kleiner, je höher der NO-Substitutionsgrad wird. Je höher der NO-Substitutionsgrad bei den Nitromethanen wird, desto größer wird der C-N-Bindungsabstand. Der N-O-Bindungsabstand bleibt jedoch nahezu gleich.

Bei Dinitrosomethanid und Dinitromethanid wird die elektrostatische Abstoßung durch die Bildung zweier intramolekularer C^{...}H^{...}O-Wasserstoffbrückenbindungen verringert, woraus sich maximale Resonanzstabilisierung ergibt.

Alle Methanide besitzen ein über das ganze Anion delokalisiertes *p*-Elektronenpaar, was relativ kurze C-CN-, C-NO- und C-NO₂-Bindungsabstände und Planarität zur Folge hat.

Die Säurestärke der C-H-gebundenen Methane wird umso höher, je höher der Substitutionsgrad ist, da die Anionen mit steigendem Substitutionsgrad stärker resonanzstabilisiert sind. Auch die Säurestärke der *aci*-gebundenen Methane wird umso höher, je höher der Substitutionsgrad ist.

Bei den einfach substituierten C-H-gebundenen Methanderivaten nimmt die Säurestärke in der Reihe $CN < NO_2 < NO$ zu. Bei den einfach substituierten *aci*-Methanderivaten nimmt die Säurestärke in der Reihe NOH $< CNH < NO_2H$ zu. Das *aci*-Nitrosomethan ist allerdings energetisch stabiler als das C-H-gebundene Nitrosomethan, wogegen die C-H-gebundenen CN- und NO₂-Methylderivate energetisch stabiler sind. Aus diesem Grund ist die Zunahme der Säurestärke in der Reihe CN $< NOH < NO_2$ richtiger. Dies stimmt auch mit der Zunahme der Mesomeriestabilisierung der Anionen besser überein.

Bei den doppelt substituierten C-H-gebundenen Methylderivaten steigt die Säurestärke in der Reihe $(CN)_2 < CNNO_2 < (NO_2)_2 < CNNO < NONO_2 < (NO)_2$. Diese Reihe stimmt mit den einfach substituierten Säuren überein. Die Säuren mit zwei unterschiedlichen Substituenten liegen zwischen denen mit zwei gleichen Substituenten. Bei den doppelt substituierten *aci*-Methanen ist dagegen keine bestimmte Ordnung zu erkennen.

Bei den dreifach substituierten C-H-gebundenen Methanen steigt die Säurestärke in der Reihe $(NO_2)_3 < (NO)_3 < (NO)(NO_2)_2 < NO(CN)_2 < (NO)_2NO_2 < CN(NO)NO_2 < CN(NO)_2$ an. Bei den dreifach substituierten *aci*-Methanen ist wiederum keine bestimmte Ordnung zu erkennen.

4 LITERATUR

- ¹ L. Birckenbach, K. Kellermann, Ber. 1925, 58B, 786–94.
- ² L. Birckenbach, K. Kellermann, *Ber.* **1925**, *58B*, 2377.
- ³ L. Birckenbach, K. Huttner, W. Stein, Ber. 1929, 62B, 2065-75.
- ⁴ M. A. Block, *Chronolgija vaznejsich Sobytij v Oblasti Chimii, Gozchimizdat,* Leningrad/Moskau **1940**, 41, 69.
- ⁵ M. A. Block, *Chronolgija vaznejsich Sobytij v Oblasti Chimii, Gozchimizdat,* Leningrad/Moskau **1940**, 41, 69.
- ⁶ M. Geoi, Istorija Chimi., Verlag Mir, Moskau 1966, 155.
- ⁷ J. L. Gay-Lussac, Ann. Chim. 1815, 95, 156.
- ⁸ H. G. Grimm, Z. Elektrochem. Angew. Phys. Chem. **1925**, *31*, 474–480.
- ⁹ A. M. Golub, H. Köhler, *Chemie der Pseudohalogenide*, VEB Deutscher Verlag der Wissenschaften, Berlin, **1979**.
- ¹⁰ a) E. Söderbäck, *Liebigs Ann. Chemie* 1919, 419, 217; b) E. Söderbäck, *Acta chem. scand.*1957, 11, 1622; c) A. M. Golub, *Z. neorg. Chimii* 1956, 1, 2517; d) L. Birckenbach, K. Kellermann, *Ber. dt. chem. Ges.* 1925, 58, 786; e) L. Birckenbach, K. Huttner, *Z. anorg. u. allg. Chemie* 1930, 190; f) L. Birckenbach, M. Linhard, *Ber. dt. chem. Ges.* 1930, 63, 2544, 2588; g) H. E. Williams, *Cyanogen Compounds* 1948, 2. Auflage, E. Arnold & Co., London; h) A. M. Golub, *Z. Org. Chem.* 1956, 26(88), 1837; i) A. Lodzinska, *Roczniki Chem.* 1967, 41(6), 1007; j) M. A. Golub, V. V. Skopenko, Usp. Chimii 1965, 34, 2098.
- ¹¹ H. Schmidtmann, Ber. dt. chem. Ges. 1896, 29, 1172.
- ¹² L. Birckenbach, K. Kellermann, *Ber.* **1925**, *58B*, 2377.
- ¹³ a) A. M. Golub, R. Akmyradov, Z. neorg. Chimii 1966, 2, 2347; b) H. Köhler, Z. Chemie 1973, 13, 401.
- ¹⁴ a) C. Krueger, J. Organomet. Chem. 1967, 9(1), 125–134; b) P. R. Hamann, P. L. Fuchs, J. Org. Chem. 1983, 48(6), 914–916.
- ¹⁵ a) W. Hiller, S. Frey, J. Straehle, G. Boche, W. Zarges, K. Harms, M. Marsch, R. Wollert, K. Dehnicke, *Chem. Ber.* **1992**, *125(1)*, 87–92; b) M. Armand, Y. Choquette, M. Gauthier, Ch. Michot, *EP 850 921 A1* **1998**.
- ¹⁶ a) J. R. Witt, D. Britton, *Acta Cryst. Sec. B* 1971, *27*, 1835–1836; b) L. Jäger, M. Kretschmann, H. Köhler, *Z. Anorg. Allg. Chem.* 1992, *611*, 68–72; c) H. Köhler, M. Jeschke, V. I. Nefedov, *Z. Anorg. Allg. Chem.* 1987, *552*, 210–214; d) P. Andersen, B. Klewe, E. Thom, *Acta Chem. Scand.* 1967, *21(6)*, 1530–1542.
- ¹⁷ a) G. Guillot-Edelheit, M. Laloi-Diard, O. Eisenstein, *Tetrahedron* 1978, *34(5)*, 523–527;
 b) F. A. Andersen, K. A. Jensen, *J. Mol. Struct.* 1980, *60*, 165–171.

- ¹⁸ H. Brand, P. Mayer, K. Polborn, A. Schulz, J. J. Weigand, *J. Am. Chem. Soc.* **2005**, *127*, 1360–1361.
- ¹⁹ a) A. H. Norbury, D. Sant, P. E. Shaw, J. Inorg. Nucl. Chem. 1970, 32(10), 3401–3403; b)
 L. A. Leites, A. P. Kurbakova, L. M. Golubinskaya, V. I. Bregadze, J. Organomet. Chem. 1976, 122(1), 1–4.
- ²⁰ a) Z. S. Kosturkevich, Yu. T. Struchkov, Z. Strukt. Khim. 1964, 5(2), 320–321 und 322–323; b) V. Grakauskas, US 4 233 249 1980; c) V. Grakauskas, A. M. Guest, J. Org. Chem. 1978, 43(18), 3485–3488.
- ²¹ a) C. B. Jeffrey, M. N. Burnett, A. A. Gakh, *Acta Cryst. Sec. C* 1998, *54*, 1229–1233; b) L. Liang, *Org. Synth.* 1941, *21*, 105–107; c) K. D. Scherfise, F. Weller, K. Dehnicke, *Z. Naturforsch. B* 1985, *40*, 906–912; d) H. L. Ammon, C. S. Choi, R. S. Damvarapu, J. Alster, *Acta Cryst. Sec. C* 1990, *46*, 295–298; e) Z. Berkovitch-Yellin, L. Leiserowitz, *Acta Cryst. Sec. B* 1984, *40*, 159–165.
- ²² a) R. A. Olofson, J. S. Michelman, J. Am. Chem. Soc. 1964, 86(9), 1863–1865; b) R. A. Olofson, J. S. Michel-man, J. Org. Chem. 1965, 30(6), 1854–1859.
- ²³ a) S. Deswarte, *Bull. Soc. Chimiq. Fr.* **1969**, *2*, 545–557; b) K. D. Gundermann, H. U. Alles, *Chem. Ber.* **1969**, *102(9)*, 3014–3022.
- ²⁴ a) D. Mulvey, W. A. Waters, J. Chem. Soc., Perkin Trans. 2 1974, 6, 666–676; b) V. V. Paramonov, V. A. Petrosyan, V. I. Slovetskii, Bull. Acad. Sci. USSR Div. Chem. Sci. 1978, 27, 678–683.
- ²⁵ a) H. Köhler, G. Lux, *Inorg. Nucl. Chem. Lett.* **1968**, *4(3)*, 133–136; b) H. Köhler, V. F. Bolelij, V. V. Sko-penko, Z. Anorg. Allg. Chem. **1980**, *468*, 179–184; c) N. Arulsamy, D. S. Bohle, B. G. Doletski, *Inorg. Chem.* **1999**, *38*, 2709–2715.
- ²⁶ a) H. Köhler, B. Eichler, A. Kolbe, Z. Chem. 1970, 10, 154; b) H. Matschiner, H. Köhler, R. Matuschke, Z. Anorg. Allg. Chem. 1971, 380(3), 267–274; c) N. Arulsamy, D. S. Bohle, B. G. Doletski, Inorg. Chem. 1999, 38, 2709–2715.
- ²⁷ a) W. V. Brown, US 2 840 591 1958; b) B. Klewe, Acta Chem. Scand. 1972, 26(5), 1921–1930; c) V. P. Tverdokhlebov, I. V. Tselinskii, B. V. Gidaspov, A. I. Shemyakin, Z. Org. Khim. 1976, 12(2), 355–358.
- ²⁸ V. A. Petrosyan, V. V. Paramonov, Bull. Acad. Sci. USSR Div. Chem. Sci. 1976, 25, 1863– 1867.
- ²⁹ H. Brand, P. Mayer, A. Schulz, J. J. Weigand, Angew. Chem. 2005, im Druck.

- ³⁰ a) W. Hiller, S. Frey, J. Straehle, G. Boche, W. Zarges, K. Harms, M. Marsch, R. Wollert, K. Dehnicke, *Chem. Ber.* 1992, *125(1)*, 87–92; b) M. Armand, Y. Choquette, M. Gauthier, Ch. Michot, *EP 850 921 A1* 1998.
- ³¹ a) J. R. Witt, D. Britton, *Acta Cryst. Sec. B* 1971, *27*, 1835–1836; b) L. Jäger, M. Kretschmann, H. Köhler, *Z. Anorg. Allg. Chem.* 1992, *611*, 68–72; c) H. Köhler, M. Jeschke, V. I. Nefedov, *Z. Anorg. Allg. Chem.* 1987, *552*, 210–214; d) P. Andersen, B. Klewe, E. Thom, *Acta Chem. Scand.* 1967, *21(6)*, 1530–1542.
- ³² a) H. Köhler, G. Lux, *Inorg. Nucl. Chem. Lett.* **1968**, *4(3)*, 133–136; b) H. Köhler, V. F. Bolelij, V. V. Sko-penko, Z. Anorg. Allg. Chem. **1980**, *468*, 179–184; c) N. Arulsamy, D. S. Bohle, B. G. Doletski, *Inorg. Chem.* **1999**, *38*, 2709–2715.
- ³³ a) H. Köhler, B. Eichler, A. Kolbe, *Z. Chem.* 1970, *10*, 154; b) H. Matschiner, H. Köhler, R. Matuschke, *Z. Anorg. Allg. Chem.* 1971, *380(3)*, 267–274; c) N. Arulsamy, D. S. Bohle, B. G. Doletski, *Inorg. Chem.* 1999, *38*, 2709–2715.
- ³⁴ a) Z. S. Kosturkevich, Yu. T. Struchkov, Z. Strukt. Khim. 1964, 5(2), 320–321 und 322–323; b) V. Grakauskas, US 4 233 249 1980; c) V. Grakauskas, A. M. Guest, J. Org. Chem. 1978, 43(18), 3485–3488.
- ³⁵ a) C. B. Jeffrey, M. N. Burnett, A. A. Gakh, *Acta Cryst. Sec. C* 1998, *54*, 1229–1233; b) L. Liang, *Org. Synth.* 1941, *21*, 105–107; c) K. D. Scherfise, F. Weller, K. Dehnicke, *Z. Naturforsch. B* 1985, *40*, 906–912; d) H. L. Ammon, C. S. Choi, R. S. Damvarapu, J. Alster, *Acta Cryst. Sec. C* 1990, *46*, 295–298; e) Z. Berkovitch-Yellin, L. Leiserowitz, *Acta Cryst. Sec. B* 1984, *40*, 159–165.
- ³⁶ A. F. Hollemann, E. Wiberg, N. Wiberg, *Lehrbuch der Anorganischen Chemie* 1995, 101.
 Auflage, Walter de Gruyter Verlag, Berlin, 232–240.
- ³⁷ I. A. Topol, G. J. Tawa, S. K. Burt, A. A. Rashin, J. Phys. Chem. A, **1997**, 101, 10075– 10081.
- ³⁸ M. D. Liptak, G. C. Shields, Int. J. Quantum Chem., 2001, 85, 727-741.
- ³⁹ A. M. Toth, M. D. Liptak, D. L. Phillips, G. C. Shields, J. Chem. Phys., 2001, 114, 4595–4606.
- ⁴⁰ G. Wedler, *Lehrbuch der Physikalischen Chemie*, **1997**, 4. Auflage, Wiley-VCH-Verlag, Weinheim.