Beiträge zur

Halogen- und Pseudohalogenchemie

Ingo Elmar Keßenich

Dissertation zur Erlangung des Doktorgrades der Fakultät Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Beiträge zur Halogen- und Pseudohalogenchemie

von

Ingo Elmar Keßenich

aus

Bonn

2001

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Thomas M. Klapötke betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig und ohne unerlaubte Hilfe erarbeitet.

München, den

(Unterschrift des Autors)

Dissertation eingereicht am

1. Berichterstatter: Prof. Dr. Thomas M. Klapötke

2. Berichterstatter: Priv.-Doz. Dr. Konstantin Karaghiosoff

Mündliche Prüfung am

Die vorliegende Arbeit wurde in der Zeit von April 1998 bis April 2001 am Department Chemie der Ludwig-Maximilians-Universität unter Anleitung von

> Herrn Prof. Dr. Thomas M. Klapötke und Herrn Dr. Axel Schulz als Zweitbetreuer

angefertigt.

Mein besonderer Dank gilt Herrn Prof. Dr. Thomas M. Klapötke für die Begutachtung und Unterstützung dieser Arbeit. Er gab mir die Möglichkeit, mich innerhalb dieser Arbeit frei zu entfalten und unterstützte mich jederzeit durch fachlichen Rat.

Herrn Priv.-Doz. Dr. Konstantin Karaghiosoff danke ich für die Zweitberichterstattung der vorliegenden Dissertation.

Herrn Dr. Axel Schulz danke ich ganz besonders für seine Betreuung und Unterstützung bei der Durchführung dieser Dissertation, für die Hilfe bei der Erstellung und Auswertung der quantenmechanischen Berechnungen, für die vielen sehr interessanten fachlichen Diskussionen und die gute und erfolgreiche Zusammenarbeit.

Mein weiterer Dank gilt Herrn Dr. Kurt Polborn, Herrn Dr. Rhett Kempe aus Rostock und den Mitarbeitern aus den Arbeitskreisen von Herrn Prof. Dr. Heinrich Nöth, Herrn Prof. Dr. Wolfgang Schnick und Herrn Prof. Dr. Peter Klüfers für die viele Mühe bei der Durchführung der Röntgenstrukturanalysen.

Herrn Prof. Dr. Heinrich Nöth, Herrn Prof. Dr. Peter Klüvers und Herrn Prof. Dr. Wolfgang Schnick danke ich für die Bereitstellung der Röntgendiffraktometer. Bei Herrn Dr. Jürgen Senker möchte ich mich für die Messung der Festkörper-NMR-Spektren bedanken.

Mein Dank geht auch an Herrn Priv.-Doz. Dr. Konstantin Karaghiosoff und Herrn Dr. Burkhard Krumm für die Anfertigung der NMR-Spektren und die fachlichen Diskussionen und Anregungen.

Bei Anette, Annemarie, Burkhard, Carmen, Christoph, Claudia, Conny, David, Geli, Gunnar, Janna, Margaret, Oli, Sebastian, Thomas, Toni und Wolfi möchte ich mich für die sehr gute Zusammenarbeit und das gute Arbeitsklima während meiner Dissertation bedanken.

Herrn Dr. Bela Tereczki danke ich für die gute Zusammenarbeit während der vielen Praktika.

Frau Irene Scheckenbach gilt mein Dank für ihre Hilfsbereitschaft in allen "Papier"-Angelegenheiten.

Bei Herrn Prof. Dr. Karlheinz Sünkel, Herrn Dr. Kai Severin, Frau Dr. Cornelia Stramm und Frau Edith Karaghiosoff möchte ich mich für die gute und freundliche "Nachbarschaft" bedanken.

Des Weiteren danke ich den Praktikanten Herrn Stephen Lürs, Stephan Kulhanek, Felix Kopp, Philipp Rathgeber, Axel Meyer und Sebastian Bauer für ihre erfolgreichen Arbeiten während ihrer Fortgeschrittenen-Praktika.

Zum Gelingen dieser Arbeit haben auch die technischen Assistenten und die Mitarbeiter der Werkstätten und Analysenlabors des Department Chemie durch die Durchführung der analytischen und spektrometrischen Messungen und die vielen Geräteanfertigungen beigetragen. Dafür bedanke ich mich an dieser Stelle recht herzlich.

Mein ganz persönlicher Dank geht an meine Familie und an meine Freundin Anette für die uneingeschränkte Unterstützung während der Dissertation und meines Studiums.

A	Einle	eitung und Aufgabenstellung	5
B	Allgo B1 B2 B3	emeiner Teil Abkürzungen Maßeinheiten Verbindungen	7 7 8 9
С	Thia	zylhalogenide	11
	C1	Thiazyldichlorid	11
	C1.	1 Einführung – Bisheriger Kenntnisstand	11
	C1.	2 Ergebnisse und Diskussion	13
	C1.	3 Strukturanalyse	16
	C2	Reaktion des Thiazylchlorids mit den Halogenid-Anionen	
		$X = F^{-}, Br^{-}, I^{-} - Thiazyldihalogenide (NSX_2^{-} und NSXY^{-})$	22
	C2.	1 Einführung – Bisheriger Kenntnisstand	22
	C2.	2 Experiment	22
	C2.	3 Struktur	27
	C2.	4 Thermodynamik	30
	C2.	5 Bindung	31
	C_2	0 NSH2	30
	C_{2}	Umsetzung von Iniazylaichioria mit Übergangsmetaliverbindungen	30
	C_{2}	1 Eliminiung – Disheriger Kennunsstand 2 Backtion von [DDh $^+$][NISCI $^-$] mit [(Et D)ClDd((u, Cl))]DdCl(DEt)]	30 27
	C3.	2 Reaktion von [PPh4][NSCl ₂] mit [(El ₃ P)ClPd(μ -(Cl ₂)PdCl(PEl ₃)] 3 Reaktion von [PPh4 ⁺][NSCl ₂ ⁻] mit NbCl ₅ , [Cp ₂ Ti] ²⁺ [AsF ₆] ₂ ⁻ und [CpCr(NO)] ⁺ [AsF] ⁻	3/ 20
	C	$\begin{bmatrix} CpCl(NO)_{2} \end{bmatrix} \begin{bmatrix} ASI_{6} \end{bmatrix}$ 2.2.1 K initial true representation of Cl Nb(u (SNI))NbCl (23)	39
	C_2	5.5.1 KIIstalisuuktulallalyse voli Cl ₅ INO(μ -(SIN) ₂)INOCl ₅ (23)	40
	C_{1}	Umsetzung von [DD h 1 ⁺ [NSC] ¹⁻ mit elementerem Schwefel	43
	U 4	Unsetzung von [11 n4] [105012] mit elementarem Schweren	43
D	Pseu	dohalogenchemie des <i>s</i> -Triazins	44
	D1	Einführung – Bisheriger Kenntnisstand	44
	D2	Reaktion von 2,4,6–Triazido–1,3,5–triazin mit Triphenylphosphan	44
	D2	.1 Einführung – Bisheriger Kenntnisstand	44
	D2	.2 Ergebnisse und Diskussion	46
	D2	.3 Konformationsanalyse	51
	D2	4 Tetrazol vs. Azid	52
	D2	.5 Struktur von 2,4,6–Tris(triphenylphosphanimino)–1,3,5–triazin (29)	,
		2–Triphenylphosphanimino–4–azidotetrazolo	
		[5,1- <i>a</i>]–[1,3,5]triazin (31) und	
		2,4–Bis(triphenylphosphanimino)tetrazolo	
		[5,1-a]-[1,3,5] triazin (32)	61
	D2	.6 Zusammenfassung	67
	D3	Pseudohalogenidverbindungen des s-Triazins	68
	D3	.1 2,4–Dichloro–6–isocyanato–1,3,5–triazin (35) und 2–Chloro–4,6–	
		diisocyanato-1,3,5-triazin (36)	68
	D	3.1.1 Ergebnisse und Diskussion	68
	D	3.1.2 Röntgenstrukturanalyse	69
	D3	.2 Reaktion von 2,4,6–Trichloro–1,3,5–triazin mit Thiocyanat	74
	D	3.2.1 Ergebnisse und Diskussion	74

	D3.2	2.2 NMR- und Schwingungsspektroskopie	74
	D3.3	Zusammenfassung	74
Г	Daanda	halaganahamia yan D.N. Varhindungan	75
Ľ	F Seude	onar Assentar Kompleys yon	15
		rimethylsilyltrinhenylnhosnhanimin	75
	E1 1	Einleitung – Bisheriger Kenntnisstand	75
	E1.2	Kristallstruktur von [Ph ₃ PN(SiMe ₃)·ICN] (39)	76
	E1.3	Bindung im [Ph ₃ PN(SiMe ₃)·ICN] (39)	79
	E1.4	Raman-Spektroskopie	82
	E1.5	Reaktion von Ph ₃ PNSiMe ₃ mit BrCN und PPh ₃	83
	E1.5	.1 Ergebnisse und Diskussion	83
	E1.5	.2 Molekülstruktur von	
		$[Ph_3PNPPh_3]^+[NCC(NH)C(NH)CN]Br^-(40)$	84
	E2 Ps	seudohalogen-Kronenetherkomplexe –	
	[]	$K([18]krone-6)(X)(OPPh_3)] (X = N_3^-, OCN^-, SCN^- und SeCN^-)$	87
	E2.1	Einführung – Bisheriger Kenntnisstand	87
	E2.2	Ergebnisse und Diskussion	87
	E2.3	Schwingungsspektroskopie	89
	E2.4	Kristallstrukturanalyse	89
	E3 R	eaktion von Hexachlorocyclotriphosphazen mit	
		seudohalogeniden	96
	E3.1	Einfuhrung – Bisneriger Kenntnisstand	96
	E3.2	Kristelletrukturenelyse	90
	E3.3	Kristanstrukturanaryse	97
F	Zusam	menfassung der Ergebnisse	102
	F1 T	hiazylhalogenide (Kapitel C)	105
	F2 P	seudohalogenchemie des s-Triazins (Kapitel D)	107
	F3 P	seudohalogenchemie von P-N-Verbindungen (Kapitel E)	110
G	Experi	menteller Teil	111
	G1 A	usgangsverbindungen und Lösemittel	111
	G2 A	nalysenmethoden	113
	G2.1	Elementaranalyse	113
	G2.2	Schmelzpunktbestimmung	113
	G2.3	Massenspektrometrie	113
	G2.4	Infrarotspektroskopie	113
	G2.5	Raman-Spektroskopie	113
	G2.6	NMR-Spektroskopie	113
	G2.7	Berechnungsmethoden	114
	G2.8	Röntgenstrukturanalyse	115
	G3 A	rbeitstechnik	116
	G4 R	eaktionen This	117
	G4.1	$1 \text{ Intazyiaichiofia}$ $1 \text{ [Dh D]}^+ \text{[NSC]} 1^- (7)$	117
	$C_{4.1}$.1 $[\Gamma_{14}\Gamma_{1}][NO(12]](I)$ 2 $[Dh_{2}R_{7}D]^{+}[NSC(12]^{-}(\mathbf{Q})]$	11/
	G4.1	$\begin{array}{c} .2 \\ [1] 113DZ\Gamma \\] \\ [(Ph_{2}PN)_{2}C(1)^{+}[NSC]_{2}]^{-}(0) \end{array}$	11/ 11Q
	G4 1	$\begin{array}{c} \\$	110
	G4 2	$(NSCI)_{3}(3)$	119
		√ /3 \ ⁻ /	/

	G4.3	$[N_2S_3Cl]^+Cl^-(5)$	119
	G4.4	Umkristallisation von [PPh ₄] ⁺ [NSCl ₂] ⁻ in SO ₂	119
	G4.5	Umsetzung von [NSCl ₂] ⁻ mit Fluorid	119
	G4.5.	1 Reaktion von [PPh ₄] ⁺ [NSCl ₂] ⁻ mit Tetramethylammonium	
		fluorid	119
	G4.5.	2 Reaktion von [PPh ₄] ⁺ [NSCl ₂] ⁻ mit Kaliumfluorid	120
	G4.5.	3 Reaktion von $[PPh_4]^+[NSCl_2]^-$ mit Silberfluorid	120
	G4.5.	4 Reaktion von $[NMe_4]^+[SNCl_2]^-$ mit	
		Tetramethylammoniumfluorid und Kaliumfluorid	121
	G4.6	Umsetzung von [PPh ₄] ⁺ [NSCl ₂] ⁻ mit Bromid	121
	G4.6.	1 Reaktion mit Tetrapropylammoniumbromid	121
	G4.6.	2 Reaktion mit Tetraphenylphosphoniumbromid	121
	G4.7	Umsetzung von [PPh4] [NSCl ₂] mit lodid	122
	G4.8	Umsetzungen von (NSCI) ₃ mit Tetraphenylphosphoniumbromid	122
	G4.9	Umsetzung von (NSCI) ₃ mit lodid	123
	G4.9.	Reaktion mit Tetrapropylammoniumiodid Desition mit Tetrapropylammoniumiodid	123
	G4.9.	2 Reaktion mit Tetraphenylphosphoniumiodid	123
	G4.10 G4.11	Reaktion von (INSCI)3 mit NDCI5	124
	G4.11	Keaktion von $NSC1_2$ mit $NOC1_5$ Umsetzung von $[DDh]^+[NSC1]^-$ mit $[Et DC]Dd(u, (Cl)) DdC]DEt 1$	125
	G4.12	Unsetzung von [PPh.] ⁺ [NSC1.] ⁻ mit elementarem Schwefel	123
	G4.13	2.4.6 Tris(triphonylphosphonimino) 1.3.5 triggin (20)	120
	G4.14	2,4,0-1115(utpitetryphosphanimino)-1,5,5-utazin (23)	120
	04.15	2 - 11 phony phosphalminio $-4 - azidotetrazolo[5.1. a] [1.2.5] triozin (31)$	127
	C4 16	$\begin{bmatrix} 3, 1-a \end{bmatrix} = \begin{bmatrix} 1, 5, 5 \end{bmatrix} \begin{bmatrix} 1aZ \\ 11 \end{bmatrix} \begin{bmatrix} 51 \end{bmatrix}$	12/
	04.10	2,4-Dis(urprenyiphosphannino)(eu azoto	170
	G4 17	[3,1-a] - [1,3,3] - uildZill (32)	120
	G4.17	2,4-Dicinolo-0-isocyanato 1,3,5-triazin (35)	120
	G4.10	2 - CIII010 - 4,0 - UIISOCyanato - 1,3,3 - UIIZIII(30) 2.4.6 - Trijsothiocyanato - 1.3.5 - triazin (37)	129
	G4.17	2,4,0 = 111Sounocyanato = 1,5,5 = 1122 m (57) Ph. PNSiMes , ICN (30)	120
	G4.20	$[K([18]krone_6)(N_2)(OPPh_2)](41)$	130
	G4.21 G4.22	$K([18]krone_6)(OCN)(OPPh_3)](47)$	130
	G4 23	$K([18]krone=6)(SCN)(OPPh_2)](42)$	131
	G4.23	$K([18]krone=6)(SeCN)(OPPh_2)](44)$	131
	G4.25	$(PN)_3(NCS)_6$ (48)	132
Η	Anhang		133
	H1 Ei	nkristall-Röntgenstrukturanalyse von [(Ph ₃ PN) ₂ SCl] ⁺ [NSCl ₂] ⁻	133
	H1.1	Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	133
	H1.2	Atomkoordinaten und Auslenkungsparameter	133
	H2 Ei	nkristall-Röntgenstrukturanalyse von Cl ₅ Nb(µ–(SN) ₂)NbCl ₅	136
	H2.1	Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	136
	H2.2	Atomkoordinaten und Auslenkungsparameter	137
	H3 Ei	nkristall–Röntgenstrukturanalyse von	
	2,4	1,6–Tris(triphenylphosphanimino)–1,3,5–triazin (29)	138
	H3.1	Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	138
	H3.2	Atomkoordinaten und Auslenkungsparameter	138

H4	Einkristall–Röntgenstrukturanalyse von	
	2–Triphenylphosphanimino–4–azidotetrazolo	
	[5,1- <i>a</i>]–[1,3,5]triazin (31)	144
H4.	Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	144
H4.2	2 Atomkoordinaten und Auslenkungsparameter	144
Н5	Einkristall–Röntgenstrukturanalyse von 2,4–Bis(triphenyl	
	phosphanimino)tetrazolo[5,1- <i>a</i>]–[1,3,5]triazin (32)	147
H5.	Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	147
H5.2	2 Atomkoordinaten und Auslenkungsparameter	147
H6	Einkristall–Röntgenstrukturanalyse von	
	2,4–Dichloro–6–isocyanato–1,3,5–triazin (35)	150
Н6.	Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	150
H6.2	2 Atomkoordinaten und Auslenkungsparameter	150
H7	Einkristall–Röntgenstrukturanalyse von	
	2–Chloro–4,6–diisocyanato–1,3,5–triazin (36)	150
H7.	Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	150
H7.2	2 Atomkoordinaten und Auslenkungsparameter	150
H8	Einkristall-Röntgenstrukturanalyse von	
	[K([18]krone–6)(N ₃)(OPPh ₃)]	151
H8.	1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	151
H8.2	2 Atomkoordinaten und Auslenkungsparameter	151
Н9	Einkristall-Röntgenstrukturanalyse von	
	[K([18]krone–6)(OCN)(OPPh ₃)]	152
H9.	1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	152
H9.2	2 Atomkoordinaten und Auslenkungsparameter	152
H10	Einkristall-Röntgenstrukturanalyse von	
	[K([18]krone–6)(SCN)(OPPh ₃)]	153
HIU	1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	153
HIC	.2 Atomkoordinaten und Auslenkungsparameter	153
H11	Einkristall-Röntgenstrukturanalyse von Ph ₃ PNSiMe ₃ · ICN	154
H11	.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	154
HII	.2 Atomkoordinaten und Auslenkungsparameter	154
H12	Einkristall-Röntgenstrukturanalyse von (PN(NCS) ₂) ₃	156
HI2	.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	156
HI2	.2 Atomkoordinaten und Auslenkungsparameter	156
H13	Einkristall-Röntgenstrukturanalyse von	1 = 0
1110	[(Ph ₃ P) ₂ N] Br NCC(NH)C(NH)CN	158
HIJ	.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen	158
HI3	.2 Atomkoordinaten und Ausienkungsparameter	158

I Literaturverzeichnis

160

A Einleitung und Aufgabenstellung

Bei den Elementen der 7. Hauptgruppe, den Halogenen (Salzbildnern), und den Pseudohalogenen (z. B. OCN, SCN, SeCN, CNO, CN, N₃, CS₂N₃) sind zwei Eigenschaften besonders wichtig, um das chemische Verhalten dieser Spezies zu verstehen. Zum einen ist es die Größe der Atome, die innerhalb der Halogene beträchtlich zunimmt, zum anderen ist es die Neigung, Elektronen aufzunehmen, die die Chemie der Halogene und Pseudohalogene ausmacht. Deswegen gehören diese sehr reaktiven Moleküle zu einer der interessantesten Verbindungsklasse der Chemie.^[1]

Von den Halogenen sind sowohl Interhalogenverbindungen (z.B. ICl_2^+ , ICl_4^- , I_3^- , IF₅) als auch Pseudo-Interhalogenverbindungen (z.B. ICN, IN₃, IN₆⁻) bekannt. Der Reaktivitätsunterschied ist zwischen Fluor und den höheren Homologen am stärksten ausgeprägt.

Die Reaktionsfreudigkeit des Fluors ist auf die große Elektronegativität und die geringe Größe des Fluors zurückzuführen. Fluor wird deswegen auch als *Superhalogen* bezeichnet und bildet unter anderem kovalente Verbindungen wie XeF₂ und IF₇.^[2,3,4] Die höheren Homologe Chlor, Brom und Iod sind aufgrund ihrer niedrigeren Elektronegativität weniger reaktiv wie das Fluor.

Die Pseudohalogene ähneln aufgrund ihrer Größe und der geringeren Elektronegativität den höheren Homologen (Cl, Br, I, At*).

Die linearen Gruppen NNN, OCN, CNO, SCN und SeCN etc., ihre Radikale, Anionen und kovalente Verbindungen sind typische Vertreter einer Klasse, die als Pseudohalogene, Pseudohalogenide, Dipseudohalogene bzw. allgemein nach Birkenbach und Kellermann (1925) als Pseudohalogen-Verbindungen bezeichnet werden.^[5] Darunter versteht man halogenähnliche Radikale (X·), die neutrale Dimere (X–X), Wasserstoffsäuren (H–X) und leicht die Pseudohalogenid-Anionen (X⁻) bilden.

Das Pseudohalogen-Konzept lässt sich aber auch auf planare, einfach gebundene Ringsysteme (z.B. $CS_2N_3)^{[5c,6]}$ oder sogar nicht planare Systeme (z.B. CF_3) erweitern, wenn ihre Elektronegativität bzw. Chemie denen der Halogene ähnelt.

Mit Hilfe quantenmechanischer Rechnungen ist es möglich, den Zusammenhang zwischen Reaktivität, Struktur und elektronischem Verhalten der Halogen- und Pseudohalogenverbindungen zu untersuchen.

Ziel dieser Arbeit war es deshalb, neben der Charakterisierung bekannter Verbindungen, neue Halogen- und Pseudohalogenverbindungen mit Hauptgruppenelementen zu synthetisieren und zu charakterisieren. Die Untersuchung der Struktur und des chemischen Verhaltens der Verbindungen sollte durch schwingungsspektroskopische Methoden (Raman und IR) und kernmagnetische Resonanzspektroskopie zum einen, zum anderen mit Hilfe der Röntgenbeugung erfolgen. Diese Daten sollten zudem mit den Ergebnissen von *ab-initio-* und DFT-Rechnungen verglichen werden. Des Weiteren sollten mit Hilfe von quantenmechanischen Rechnungen die Bindungsverhältnisse dieser Verbindungen aufgeklärt und charakterisiert werden. Dadurch sollte sowohl der Zusammenhang zwischen Struktur und chemischer Bindung als auch die Ladungsverteilung und Reaktivität erklärt werden. Ebenso sollte ein Einblick in die Thermodynamik und Kinetik der Bildung dieser Verbindungen gewonnen werden.

B Allgemeiner Teil

B1 Abkürzungen

In den folgenden Tabellen sind die in dieser Arbeit verwendeten Abkürzungen aufgeführt.

Abb.	Abbildung	NBO	Natürliche
abs.	absolut/e		Bindungsorbital-
AO	Atomorbital		Analyse
äq.	äquivalent	NIMAG	number of imaginary
ber.	berechnet		frequencies
BO	Bindungsordnung	NLMO	natural localized
bzw.	beziehungsweise		molecular orbital
d	Tag	0.	oben
DFT	Dichtefunktional-	Ph	Phenyl
	Theorie	Pr	Propyl
Et	Ethyl	rel.	relativ
exp.	experimentell	RT	Raumtemperatur
h	Stunde	S.	siehe
HOMO	highest occupied	S.	Seite
	molecule orbital	SiMe ₃	Trimethylsilyl
LM	Lösemittel	Smp.	Schmelzpunkt
LP	lone pair	Т	Temperatur
LUMO	lowest unoccupied	Tab.	Tabelle
	molecule orbital	u.	unten
m/z	Masse pro Ladung	vgl.	vergleiche
max.	maximal/e	VS.	versus
Me	Methyl	z.B.	zum Beispiel
MO	Molekülorbital	zit.	zitierte
n.b.	nicht beobachtet	ZPE	zero point energy

Tabelle B1Allgemein verwendete Abkürzungen.

IR	Infrarot	Т	Transmission
VS	very strong	Ν	Nujol
S	strong	ν	Frequenz
m	medium	$\widetilde{\nu}$	Wellenzahl
W	weak	λ	Wellenlänge
VW	very weak	ν	Valenzschwingung
sh	shoulder	I _{rel.}	relative Intensität
br	broad		
as	Index für antisymmetrisch	S	Index für symmetrisch
δ	Deformationsschwingung	γ	Deformationsschwingung
	(in plane)	•	(out of plane)

 Tabelle B2
 Verwendete Abkürzungen in der Schwingungsspektroskopie.

Tabelle B3Verwendete Abkürzungen in der NMR-Spektroskopie.

$\Delta v^{1/2}$	Halbwerts-Linienbreite	m	Multiplett
S	Singulett	δ	chemische Verschiebung
d	Duplett	J	Kopplungskonstante
t	Triplett	ppm	parts per million
q	Quartett		

B2 Maßeinheiten

Die vom Internationalen Einheitensystem (SI) abweichenden Maßeinheiten sind in Tabelle B4 aufgeführt.

Größe	Symbol	Bezeichnung	Umrechnung in SI- Einheit
Länge	Å	Ångström	$1 \text{ Å} = 10^{-10} \text{ m}$
Temperatur	°C	Grad Celsius	$^{\circ}C = K - 273.1$
Wellenzahl	cm^{-1}	Wellenzahl	$1 \text{ cm}^{-1} = 100 \text{ m}^{-1}$
Druck	bar	Bar	$1 \text{ bar} = 10^5 \text{ Nm}^{-2}$
Energie	cal	Kalorie	1 cal = 4.18 J
Energie	eV	Elektronenvolt	$1 \text{ eV} = 1.6022 \cdot 10^{-19} \text{ J}$
	Н	Hartree	1 H = 1 au = 27.2 eV
			= 2627.25 kJ / mol
			= 627.4 kcal / mol

Tabelle B4Abweichend vom SI-System verwendete Einheiten.

B3 Verbindungen

S ₄ N ₄	1	CpCr(NO) ₂ Cl	25
S_2N_2	2	N3 N3 N3 N3	26
(NSCl) ₃	3	N ₃ N ₃ N ₃ NPPh ₃	27
NSCI	4	Ph ₃ PN NPPh ₃	28
$\left[S_{3}N_{2}Cl\right] ^{+}Cl^{-}$	5	Ph ₃ PN NPPh ₃ N N N N N N N N N N N N N N N N N N N	29
NSCl ₂ ⁻	6	N N N NPPh ₃	30
$[Ph_4P]^+[NSCl_2]^-$	7	N N N N ₃ N NPPh ₃	31
$[Ph_4P]^+[NSCl_2]^-$	8	Ph ₃ PN N NPPh ₃	32
[(Ph ₃ PN) ₂ SCl] ⁺ [NSCl ₂] ⁻	9	N N N N N N N N NPPh ₃	33

Tabelle B5Aufstellung der Verbindungen.

NSF ₂ ⁻	10	N = N $N = N$	34
NSH_2^-	11	Cl N NCO	35
$\left[S_4N_3\right]^+\!Cl^-$	12	OCN N NCO	36
NSClBr ⁻	13	SCN NCS	37
NSBr ₂ ⁻	14	Ph ₃ PNSiMe ₃	38
NSICI ⁻	15	Ph ₃ PNSiMe ₃ ·ICN	39
NSI_2^-	16	((Ph ₃ P) ₂ N ⁺ Br ⁻) ₂ NCC(NH)C(NH)CN	40
$[Ph_4P]_2^+$ $[Cl_3Pd(\mu - (SN)_2)PdCl_3]^{2-}$	17	[K([18]krone-6)(Ph ₃ PO)(N ₃)]	41
$[Ph_4P]_2^+$ $[Cl_2Pd(\mu - (S_3N_2))PdCl_2]^{2-}$	18	[K([18]krone-6)(Ph ₃ PO)(OCN)]	42
NbCl ₅	19	[K([18]krone-6)(Ph ₃ PO)(NCS)]	43
$[Cp_2Ti]^{2+}[AsF_6]_2^{-}$	20	[K([18]krone-6)(Ph ₃ PO)(NCSe)]	44
$[CpCr(NO)_2]^+ [AsF_6]^-$	21	$(NPCl_2)_3$	45
[Et ₃ PClPd(µ–(Cl) ₂)PdClPEt ₃]	22	(NPCl ₂) ₄	46
Cl ₅ Nb(µ–(SN) ₂)NbCl ₅	23	(NPCl ₂) _x	47
Cp ₂ TiCl ₂	24	$(NP(NCS)_2)_3$	48

_

C Thiazylhalogenide

C1 Thiazyldichlorid

C1.1 Einführung – Bisheriger Kenntnisstand

Schwefel-Stickstoff Verbindungen sind schon seit über 100 Jahren bekannt und stehen, vor allem seit der Entdeckung der ungewöhnlichen Eigenschaften Polymers^[7] (Supraleiter) des $(SN)_x$, wieder im Mittelpunkt vieler Forschungsarbeiten. Neben den ungeladenen cyclischen und acyclischen Verbindungen sind auch eine große Anzahl anionischer und kationischer Verbindungen synthetisiert und charakterisiert worden.^[8a,b]

Darüber hinaus gibt es eine Vielzahl an Schwefelstickstoffhalogenen, von denen jedoch in den meisten Fällen nur die Fluor- und Chlorverbindungen stabil genug sind, um sie eingehend zu untersuchen und damit Folgechemie zu betreiben. Die ersten Schwefel-Stickstoff-Fluor-Verbindungen wurden 1955 von Oskar Glemser et al.^[9] synthetisiert. Die zwei wichtigsten Vertreter dieser Verbindungsklasse sind die kleinen Moleküle Thiazylfluorid (NSF) und Thiazyltrifluorid (NSF₃), da sich fast alle SNF-Verbindungen von ihnen ableiten lassen.^[10]

Der wichtigste Vertreter der Chlor-Schwefel-Stickstoffchemie ist das aus S_4N_4 (1) oder S_2Cl_2 (2) und NH₄Cl mit anschließender Chlorierung leicht zugängliche cyclische Trichlorocyclotrithiazyl (NSCl)₃ (3, Gleichung C1 und C2), da dieser 6-Ring-Heterocyclus in Lösung im Gleichgewicht mit dem monomeren NSCl (4, Gleichung C3) steht und somit als Ausgangsverbindung für eine Vielzahl der bekannten Schwefel-Stickstoff-Halogen-Verbindungen dient.

Thiazylbromid ist durch vorsichtige Pyrolyse von S_4N_3Br bei 90 °C darstellbar und wurde durch IR-Spektroskopie (Ar-Matrix und Gasphase) und Photoelektronenspektroskopie charakterisiert.^[11] Das höhere Homologe Thiazyliodid ist nicht bekannt.^[11a]

Die Chemie des (NSCl)₃ zeigt eine große Vielfalt und ist bereits intensiv untersucht worden.^[12,13] Seit längerem ist bekannt, dass das (NSCl)₃/NSCl-Gleichgewicht (Gleichung C3) stark die Chemie von (NSCl)₃ bzw. NSCl in Lösung bestimmt.^[8] Auf der Basis einer ¹⁴N-NMR-Untersuchung waren Passmore et al. in der Lage, die thermodynamischen Größen des (NSCl)₃/NSCl Gleichgewichtes in Lösung abzuschätzen ($\Delta H^{\circ} = 65 \pm 13 \text{ kJ mol}^{-1}$, $\Delta S^{\circ} = 206 \pm 20 \text{ J mol}^{-1} \text{ K}^{-1}$ (Gleichung C3)).^[14] Des Weiteren schlussfolgerten die Autoren, dass sowohl die Hin- als auch die Rückreaktion einer starken kinetischen Hinderung unterliegt. Es wurde Verunreinigungen die Monomerisierung des Trimers angenommen, dass begünstigen. Die Untersuchung des Einflusses von Cl⁻, NH₄⁺ und Cl₂ auf das Gleichgewicht ergab, dass diese Verbindungen als facilitating agent für die Monomerisierung ausgeschlossen wurden.

C1.2 Ergebnisse und Diskussion

 $NSCl_2^-$ gehört zu einer neuen Klasse sehr labiler ternärer Anionen des Typs NSX_2^- (X = Halogen), von welcher kein Vertreter, der das "nackte" Anion enthält, bisher strukturell charakterisiert^[15] und in hohen Ausbeuten synthetisiert worden ist. Der überwiegende Teil der Verbindungen, die die NSX₂-Einheit enthalten, sind durch kovalente Wechselwirkungen des N-Atoms mit entweder einem Metallzentrum wie z.B. im Hg(NSF₂)₂ ^[16,17,18] oder durch organische Gruppen wie in R-NSCl₂ (R = R'C, R"SO₂, C₆F₅, etc.) stabilisiert.^[19]

Bei der theoretischen Untersuchung des Cl⁻-Acceptorverhaltens und der Thermodynamik von NSCl wiesen *ab-initio*-(CCSD(T))- und Dichtefunktional-Rechnungen (B3LYP) auf einen barrierefreien Angriff des Cl⁻-Anions auf das NSCl Molekül hin, welcher zur Bildung des NSCl₂⁻-Anions führt. Diese Reaktion stellt eine exotherme Lewis-Base-Lewis-Säure-Reaktion dar, mit einer berechneten molaren Enthalpie von $\Delta H_{298} = -124.6$ kJ mol⁻¹, die zu einem Ladungstransfer von $Q_{CT} = 0.385e$ (B3LYP/6-311+G(3df)) führt.^[20] Daher sollte die Synthese von NSCl₂⁻ durch Reaktion von Thiazylchlorid (NSCl) und Cl⁻-Donatoren mit sperrigen Kationen in polaren Lösemitteln möglich sein. Eine leicht zugängliche Quelle zu NSCl stellt das oben erwähnte trimere (NSCl)₃ dar.

Entgegen den Angaben von Passmore *et al.* tritt bei Zugabe einer Lösung von $(NSCl)_3/NSCl$ in CH₂Cl₂ zu einer Lösung von Ph₄PCl in CH₂Cl₂ eine spontane Reaktion ein. Die Bildung einer neuen Verbindungen wurde durch ¹⁴N/¹⁵N-NMR-Experimente bewiesen (Gleichung C4, Tabelle C1).^[21]

 $NSCl_2^-$ ist im Vergleich zu NSCl um ca. 200 ppm zu hohem Feld (niedriger Frequenz) verschoben. Die im Festkörper und in CH₂Cl₂ gemessenen Verschiebungen unterscheiden sich nur geringfügig und auch das Gegenion hat, wie zu erwarten war, keinen Einfluss in Lösung. Beim Wechsel von CH₂Cl₂ oder CCl₄ zu sehr polaren Lösemitteln wie SO₂ erreicht der Verschiebungsunterschied z. T. schon bis zu 29 ppm. Aus diesem Grunde wurden alle Stickstoff-NMR-Messungen in CH₂Cl₂ bzw. CCl₄ vorgenommen.

$$NSCl + Cl^{-} \xrightarrow{CH_2Cl_2}_{RT, 24 \text{ h}} NSCl_2^{-}$$
(C4)
4 6

Verbindung		δ / ppm	$\Delta v^{1/2}$ / Hz
$[Ph_4P]^+[NSCl_2]^-(7)$	¹⁴ N	+153	140
$[Ph_4P]^+[NSCl_2]^-$	¹⁵ N	+148	-
$[Ph_4P]^+[NSCl_2]^-$	¹⁵ N MAS	+147	-
$[Ph_{3}BzP]^{+}[NSCl_{2}]^{-[b]}$ (8)	^{14}N	+153	140
$[(PPh_3N)_2SCl]^+[NSCl_2]^-(9)$	¹⁴ N	+153	140
(NSCl) ₃ ^[c]	¹⁴ N	-263	260
NSCl ^[c]	¹⁴ N	+329	80

Tabelle C1 ¹⁴N- und ¹⁵N-NMR-Verschiebungen (δ) und Halbwertsbreiten ($\Delta v^{1/2}$).^[a]

^[a] Chemische Verschiebungen auf der δ -Skala relativ zu reinem Nitromethan. Lösemittel: CH₂Cl₂.

^[b] Bz = Benzyl.

^[c] *cf.* Passmore et al.^[14]: in CCl₄: (NSCl)₃ –264, NSCl +352; in SO₂: NS⁺ +202, NSF +196, NSCl +323, ClSNSCl⁺ +19 und (NSCl)₃ –259 ppm.

Zu Beginn der Reaktion veränderte sich die dunkelgrüne Farbe der (NSCl)₃/NSCl-Lösung innerhalb von Sekunden nach Zutropfen der Ph₄PCl-Lösung zu hellgelb. Nach 24 h Reaktionszeit wurde nur noch eine einzige ¹⁴N-Resonanz bei $\delta = +153$, welche im Bereich zwischen den Resonanzen von NSCl bei $\delta = +329$ und (NSCl)₃ bei $\delta = -263$ liegt, im ¹⁴N-NMR-Experiment detektiert. Das Raman-Spektrum der Lösung zeigte einen neuen sehr starken *peak* bei 1343 cm⁻¹, der im Bereich einer SN-Streckschwingung liegt. Nach dem Entfernen des Lösemittels verblieb ein schwach-gelber Feststoff, dessen Raman-Spektrum im Einklang mit dem Vorliegen von reinem [PPh₄]⁺[NSCl₂]⁻ stand. Im Vergleich mit dem theoretisch berechneten Schwingungsspektrum konnten fünf Normalschwingungen eindeutig dem C_s symmetrischen NSCl₂⁻-Anion zugeordnet werden (Tabelle C2).^[23]

Verwandte Verbindunge	n ^[a]		Experimentelle Wellenzahlen [cm	1 ⁻¹] ^[b]	Zuordnung $C_{\rm s}$ -symmetr	für isches NSCl₂ [−]	Berechnete Wellenzahlen [cm ⁻¹]
NSF ₂ ⁻ (10) IR	OSF ₂ IR	OSCl ₂ IR	$NSCl_2^-$ IR	Raman			B3LYP/6-311+G(3df) ^[c,d]
1368	1333	1251	1338(s)	1339[10] ^[e]	$\nu_{l}(A')$	v(SN)	1405 (96)[116] ^[f]
500(br)	808	492	302(m)	308[2]	$\nu_2(A')$	v _s (SCl)	304 (48)[9]
500(br)	748	455	293(m)	293[2]	v ₅ (A")	v _{as} (SCl)	300 (155)[1]
325(br)	530	344	220(m)	222[4]	v ₃ (A')	$\delta_{s}(NSCl_{2})$	210 (16)[15]
325(br)	390	284	-	160[3]	v ₆ (A")	$\delta_{as}(NSCl_2)$	164 (84)[11]
-	410	194	-	-	v ₄ (A')	δ(ClSCl)	69 (0.2)[11]

Tabelle C2Experimentelle und berechnete Raman- und IR-Daten.

[a] Siehe Literatur [1] und [23]; $\left[(Me_2N)_3S\right]^+$ als Gegenion zum NSF_2^-

[b] *cf*. (NSCl)₃ [IR: 1017(vs), 698(ms), 621(w), 514(m), 493(m), 385(m), 320(m) cm⁻¹].^[12f]

[c] unskalierte Frequenzen; IR-Intensitäten in runden Klammern (km mol⁻¹), Raman-Aktivitäten in eckigen Klammern [Å⁴ amu⁻¹].

[d] CCSD(T)/6-311+(2d): 1310, 295, 311, 211, 169, 64 cm⁻¹.

[e] *cf.* SN⁺: $v_1(\Sigma_g)$ 1434 cm^{-1.[23]}

[f] Außer für v_1 gibt es eine gute Übereinstimmung zwischen Experiment und Theorie. Eine ähnlich große Abweichung wurde für die v(SN) in NSCl gefunden: B3LYP/6-311+G(3df): $v_1(SN)$ 1386(51)[41]; $v_2(SCl)$ 406(128)[10], $v_3(NSCl$, Beugeschwingung) 268(14)[15]; exp.: NSCl (IR): 1324 (s), 415(m), 272(m) cm⁻¹).^[22]

Die S-N-Streckschwingung, $v_1 = 1339$ cm⁻¹, ist gegenüber der von monomerem NSCl ($v_1 = 1323$ cm⁻¹) zu höherer Wellenzahl verschoben, was auf einen kürzeren S-N-Bindungsabstand hinweist. Die Normalschwingungen v_3 und v_6 beschreiben die symmetrischen und antisymmetrischen Deformationsmodi des gesamten NSCl2--Anions; v_2 und v_5 repräsentieren die symmetrische und antisymmetrische Streckschwingung der SCl₂-Einheit, während v₄ die Deformation der SCl₂-Gruppe beschreibt. Es ist interessant, die IR/Raman-Daten der isoelektronischen Paare NSF₂⁻ und OSF₂ bzw. OSCl₂ und NSCl₂⁻ zu vergleichen.^[15,23,24] Für beide Anionen wird verglichen mit dem OS-Analogon - die Streckschwingung v_1 bei höherer Wellenzahl beobachtet und die S-X-Streckschwingungen (X = Cl, F) bei tieferer Wellenzahl. Wurde [Me₄N]Cl, welches nur eine sehr geringe Löslichkeit in CH₂Cl₂ besitzt, an Stelle von [Ph₄P]Cl eingesetzt, so fand eine langsame Umwandlung der farblosen [Me₄N]Cl-Suspension in eine blass-gelbe Suspension statt. Unabhängig von der eingesetzten Stöchiometrie (Die Reaktion wurde in einem 1 : 1, 1 : 2 und 1([Me₄N]Cl) : 3 NSCl Verhältnis durchgeführt), bewiesen die Mikro-Analysen des blass-gelben Feststoffes, Ramanspektroskopische-Untersuchungen und Pulverdiffraktometrie-Experimente das Vorliegen von reinem [Me₄N][NSCl₂].^[25] Überschüssiges NSCl/(NSCl)₃ verblieb entsprechend der eingesetzten Stöchiometrie in Lösung. Das NSCl₂⁻-Anion (mit [(Ph₃PN)₂SCl]⁺ als Kation)^[26] wurde ebenfalls als Nebenprodukt (10 % Ausbeute) in der Reaktion von Ph₃PNSiMe₃ mit NSCl (1:3 Verhältnis) isoliert. Die Reaktion von (NSCl)₃ mit Ph₃PNSiMe₃ stellt eine sehr komplexe Reaktion dar, in welcher, in Abhängigkeit von den Reaktionsbedingungen, verschiedene Produkte gebildet werden.^[27]

C1.3 Strukturanalyse

Bis jetzt sind keine Strukturdaten einer Verbindung, die das "nackte" NSX₂⁻-Anion (X = Halogen) enthält, veröffentlicht worden. In Hg(NSF₂)₂ ist die NSF₂-Gruppe kovalent an das Hg-Atom gebunden mit einem NS-Bindungsabstand von 1.439 Å.^[18b] Die Einkristallröntgenstrukturanalyse von NSCl₂⁻ enthüllte ein leicht verzerrtes C_s -symmetrisches Anion (Abbildung C2) mit einer sehr kurzen SN-Bindunglänge [d(SN) = 1.436 Å, cf. 1.416 NSF₃(g), ^[28] 1.444 in OSCl₂(g), ^[29] 1.446 NSF(g), ^[30] 1.450 NSCl(g), ^[31] 1.42 SN⁺(s)^[32]] und zwei lose gebundenen Chloratomen [d(SCl) = 2.423 Å, cf. 2.014 SCl₂(g), ^[33] 2.076 OSCl₂(g), ^[29] 2.161

NSCl(g);^[31] Tabelle C3]. NSCl₂⁻ besitzt einen relativ kleinen ClSCl Winkel (93.3°) und einen größeren NSCl-Winkel (112.8°), welcher aus einer abstoßenden Wechselwirkung zwischen den SN- π -Bindungen und den SCl- σ -Bindungen resultiert.

- Abbildung C1 Molekülstruktur von NSCl₂⁻. Ellipsoide der thermischen Schwingung mit 25 % Aufenthaltswahrscheinlichkeit bei 200 K. Bindungswinkel in [°] und Bindungslängen in [Å].
- Tabelle C3Experimentelle und berechnete Strukturdaten des $NSCl_2^-$ -Anions
(Winkel in [°], Abstände in [Å]).

	[(Ph ₃ PN) ₂ SCl] ⁺ [NSCl ₂] ⁻ (9)	B3LYP 6-311+G(3df) ^[a]	CCSD(T) 6-311+G(3df) ^[a]
SN	1.436(6)	1.445	1.456
SCl	2.423(2), 2.427(2)	2.487	2.453
<nsc1< td=""><td>112.76(19), 113.8(3)</td><td>114.4</td><td>113.9</td></nsc1<>	112.76(19), 113.8(3)	114.4	113.9
<clscl< td=""><td>93.26 (8)</td><td>102.4</td><td>99.9</td></clscl<>	93.26 (8)	102.4	99.9

^[a] Es wird darauf hingewiesen, dass die Rechnungen für ein isoliertes Teilchen in der Gasphase in C_s-Symmetrie durchgeführt wurden. Aufgrund von Gittereffekten kann es daher zu signifikanten Unterschieden zwischen der Gasphasen- und der Festkörperstruktur kommen. Siehe auch Literatur [34]. Formal kann das $NSCl_2^-$ -Anion als isoelektronisches Aza-Analogon des Thionyldichlorids (OSCl_2) mit Schwefel in der Oxidationsstufe (+IV) angesehen werden. Das OSCl_2 stellt ein hochpolarisiertes, elektronenreiches Molekül mit einer starken SO- und zwei schwachen SCl-Bindungen dar (Abbildung C2). Der Austausch des Sauerstoffatoms durch ein N⁻ sollte eine weitere Schwächung der SCl-Bindung herbeiführen, wohingegen die NS-Bindung einen beachtlichen Anteil an π -Charakter (Bindungsordnung zwischen 2 und 3) aufweist.

Abbildung C2 Standard-VB-Darstellung von $NSCl_2^-$ und $OSCl_2$ (E = S, N⁻).

Die hervorstechenden strukturellen Besonderheiten von NSCl₂⁻ lassen sich mit einfachen, qualitativen VB-Betrachtungen erklären (Abbildung C2). Die kanonischen Lewis-Strukturen A-E sind leicht zu finden. In der Struktur A hat das Schwefel-Atom seine Valenzschale um d-Atomorbitale (AO) erweitert, um entweder eine Elektronenpaar- π -Bindung zum Sauerstoff oder Stickstoffatom zu bilden. Da die Populationen der d_{xy}-,d_{xz}- und d_{yz}-AOs jedoch so klein sind,^[35] kann angenommen werden, dass erweiterte Valenzschalen-Lewis-Strukturen (wie in A) nur sehr gering zum Resonanzschema des Grundzustands beitragen. ^[36,37] Die berechneten NAO-Partialladungen von $Q_{\rm S}$ = +1.01*e* am Schwefel, $Q_{\rm N}$ = -0.79*e* am Stickstoff und $Q_{\rm CI}$ = -0.61*e* an den beiden Chloratomen sowie die berechneten Bindungsordnungen [BO(NS) = 2.21, BO(SCl) = 0.23; *cf.* BO(SN, SN⁺) = 2.76, BO(SN,NSCl) = 2.16, BO(SCl, NSCl) = 0.45; BO(SCl, OSCl₂) = 0.74, BO(SO, OSCl₂) = 0.98]^[38] unterstützen die Schlussfolgerung, dass die Resonanzstrukturen C, D und E die wichtigsten Strukturen für das NSCl₂⁻-Anion darstellen.^[39] Dies ist im Einklang mit der kurzen SN-Bindungslänge und den langen SCl-Bindungslängen.

Im Falle des OSCl₂ wurde eine größere SCl-Bindungsordnung berechnet, was darauf hinweist, dass die Struktur **E** weniger bedeutend ist. Darüber hinaus deuten die Formalladungen darauf hin, dass die Resonanzstrukturen **B**, **C** und **D** die primären kanonischen Lewis-Strukturen sind.^[40] Daher ist der Unterschied in den Resonanzschemata des OSCl₂ und NSCl₂⁻ das Gewicht der Struktur **B** im Resonanzschema des OSCl₂ und das Gewicht der Struktur **E** im Resonanzschema des NSCl₂⁻. Die NBO Analyse für NSCl₂⁻ legt Struktur **E** nahe.^[41]

Die Untersuchung der nicht-kovalenten Effekte zeigt zudem, dass es starke Wechselwirkungen der freien Elektronenpaare (p-LP, lokalisiert in p-AOs) an beiden Chloratomen mit den zwei unbesetzten, antibindenden π^* -Orbitalen der SN-Dreifachbindung gibt. Diese intramolekulare p-LP(Cl) $\rightarrow \pi^*$ (NS) Donor-Acceptor-Wechselwirkung (Hyperkonjugation) beschreibt die ziemlich langen SCl-Bindungslängen^[42] und entspricht einer Resonanz zwischen den Strukturen C \leftrightarrow D \leftrightarrow E. Entsprechend des NBO-Analyse-Algorithmus bedeuten diese Wechselwirkungen eine konzertierte Delokalisation der zwei Chlorelektronen.

Harcourt wies darauf hin, dass für eine Zwei-Elektronen-Delokalisation mehr Energie benötigt werden könnte als für eine konzertierte Ein-Elektronen-Delokalisation. Wenn dies der Fall ist, dann sind *increased valence*-Strukturen besser geeignet, um die elektronische Struktur im VB-Bild zu beschreiben.^[43]

Abbildung C3Delokalisierte Molekülorbitale (bindend) von $NSCl_2^-$, die die
S-N- π - und die schwachen S-Cl- σ -Bindungen beschreiben.

Die Untersuchung der Molekülorbitale (MO) des C_s -symmetrischen NSCl₂⁻ enthüllte zwei MOs mit NS- π -Bindungscharakter, ein MO für die π_x - und ein MO für die π_y -Elektronen. Diese beiden MOs sind jedoch "weiter" über die SCl₂-Einheit delokalisiert, wodurch die schwachen SCl- σ -Bindungen zusätzlich stabilisiert werden (Abbildung C3).^[44]

Am besten versteht man diese Bindungssituation als die Wechselwirkung des SN⁺- π -Systems (SN-Dreifachbindung) mit einem freien Elektronenpaar von jedem Cl⁻-Ion. Betrachten wir das System: NS⁺ + Cl1⁻ + Cl2⁻, dann überlappt das doppelt-besetzte 3p_x(Cl1)-AO " σ -artig" mit dem einfach-besetzten 3p_x(S)-AO, und auch das doppelt-besetzte 3p_y(Cl2)-AO überlappt " σ -artig" mit dem einfach-besetzten 3p_y(S)-AO. Die 3p_x(S)- und 3p_y(S)-AOs hingegen überlappen " π_x - und π_y -artig" mit den einfach-besetzten 2p_x(N)- und 2p_y(N)-AOs. Folglich entstehen zwei Vier-Elektronen-Drei-Zentren-Bindungen mit "geschwächten" SCl1- und SCl2- σ -Bindungen und "geschwächten" SN- π_x - und π_y -Bindungen.^[43,45] Interessanterweise sind die resultierenden bindenden MOs hauptsächlich aus p-AOs (an N, S und Cl) aufgebaut (*keine* d-Orbitale), während die nichtbindenden MOs durch eine geringfügige d-Orbitalbeteiligung am Schwefelatom stabilisiert werden (Abbildung C4).

Abbildung C4 Stabilisierung der nichtbindenden MOs durch eine geringfügige d-Orbitalbeteiligung am Schwefelatom in NSCl₂⁻.

C2 Reaktion des Thiazylchlorids mit den Halogenid-Anionen X = F⁻, Br⁻, I⁻ – Thiazyldihalogenide (NSX₂⁻ und NSXY⁻)

C2.1 Einführung – Bisheriger Kenntnisstand

Über die ternären "nackten" Thiazyldihalogenide NSX₂⁻ bzw. die gemischthalogenierten NSXY⁻ ist noch nicht viel in der Literatur bekannt. Mews et al. berichtete über den Nachweis des "nackten" NSF₂⁻ Anions (10) in einem ¹⁹F-NMR-Experiment.^[15] Bis dato ist nichts über die schweren bzw. gemischthalogenierten Thiazyldihalogenide veröffentlicht worden. Experimentell wurde die Reaktion von $(NSCl)_3$ mit $[Ph_4P]^+[X]^-$ (X = Cl, Br, I) und mit Me₄NF sowie die Reaktionen von $NSCl_2^{-}$ Salzen mit $[Ph_4P]^{+}[X]^{-}$ Salzen untersucht. Ferner wurde die Thermodynamik dieser Halogenaustauschreaktion berechnet. Ziel der theoretischen und experimentellen Untersuchungen zu den Thiazylhalogeniden (NSX, NSX₂⁻, $(NSXY)^{-}$; X, Y = H, F, Cl, Br und I) war, die strukturellen Unterschiede sowie Bindungsverhältnisse zu diskutieren sowie Einsicht in die Stabilität dieser Verbindungen zu gewinnen. Zusätzlich wurde auch das hypothetische $NSH_2^{-}(11)$ in diese Überlegungen miteinbezogen.

C2.2 Experiment

Wie in ¹⁴N-NMR-Experimenten beobachtet wurde, ist eine Lösung von $[PPh_4]^+[NSCl_2]^-$ in CH_2Cl_2 über mehrere Tage stabil. Die Reinigung des Produktes durch Umkristallisation erweist sich jedoch als schwierig, da meist das deutlich schlechter lösliche Tetraphenylphosphoniumchlorid auskristallisiert. Verwendet man dagegen polarere Lösemittel wie SO₂, so erfolgt eine langsame sehr komplexe Zersetzung in S₄N₄, NSCl und SN-, NSCl-Ringe. Der Versuch einer Umkristallisation in flüssigem SO₂ liefert nadelförmige gelbe Kristalle des seit über 100 Jahren bekannten 1,2,4,6,3,5,7-Tetrathiaazacycloheptatrieniumchlorid (**12**), dessen Kristallstruktur in Abbildung C5 wiedergegeben ist. Über die Struktur des S₄N₃⁺-Kations mit verschiedensten Anionen wurde zwar schon öfters berichtet^[46], jedoch gelang Woollins *et. al* erst 1996 die erste vollständige kristallographische Charakterisierung von **12**. Sie erhielten Einkristalle des in den meisten Lösemitteln unlöslichen [S₄N₃]Cl aus 100%iger Ameisensäure.^[47] Anscheinend erweist sich SO₂

als ein zu aggressives Lösungsmittel für das labile NSCl₂⁻-Anion. Wie genau die Reduktion und Kondensation abläuft bleibt unklar.

Abbildung C5 Molekülstruktur des $S_4N_3^+$ -Kations mit Bindungslängen in [Å].

Interessant ist bei der Struktur des $S_4N_3^+$ -Ions, dass sich die Chloridanionen vermutlich auf Grund von van-der-Waals-Wechselwirkungen, wie in Sandwichkomplexen, mit dem $S_4N_3^+$ -Kation umgeben (Abbildung C6).^[47]

Abbildung C6 Ansicht der Elementarzelle von 12 entlang der a-Achse.

Die Reaktionen von $[PPh_4]^+[NSCl_2]^-$ bzw. (NSCl)₃ mit $[Ph_4P]^+X^-$ (X = Br und I) und $[Me_4N]^+F^-$ in Methylenchlorid wurden ¹⁴N- bzw. ¹⁹F-NMR- und Ramanspektroskopisch verfolgt, wobei zum einen die Temperatur (zwischen –60 und 20°C) und zum anderen die Reaktionszeit (5, 30, 60min, 24h) variiert wurde. In der Reaktion von $[PPh_4]^+[NSCl_2]^-$ mit $[Me_4N]^+F^-$ konnte ¹⁹F-NMR-spektroskopisch die Bildung von NSF_2^- gemäß Gleichung C5 und C6 nachgewiesen werden. Die chemische Verschiebung von 160 ppm stimmt mit dem von Mews *et al.* berichteten Wert überein.^[15] Neben dem Signal für das NSF_2^- -Anion findet man eine Vielzahl anderer Signale (z.B. –170 ppm CH₂ClF, –155 ppm HF₂⁻), da "nacktes" F⁻ sehr reaktiv ist und sogar mit dem Lösemittel CH₂Cl₂ reagiert.^[48]

$$N=S < Cl^{-} + X^{-} \longrightarrow N=S < Cl^{-} + Cl^{-}$$
(C5)

$$N=S < X^{T} + X^{T} \longrightarrow N=S < X^{T} + CI^{T}$$
(C6)

Die Reaktion von $[PPh_4]^+[NSCl_2]^-mit [PPh_4]^+Br^-$ konnte im Raman-Spektrum (gemessen nach 30 min) anhand der S-N-Streckschwingung, v(SN), verfolgt werden, da diese bei Zugabe von $[PPh_4]^+Br^-$ aufspaltet, so dass neben dem *peak* bei 1339 cm⁻¹ für die v(SN) in NSCl_2⁻ noch zwei weitere intensitätsschwächere *peaks* bei 1328 und 1316 cm⁻¹ erscheinen (Abbildung C7). Darüber hinaus wird im ¹⁴N-Spektrum eine zweite breite Resonanz bei 164 ppm neben der von NSCl_2⁻ bei 153 ppm beobachtet. Zusätzlich findet man im ¹⁴N-NMR-Spektrum die Signale von S₄N₄ (–260 ppm) und S₂N₂ (–59 ppm), welche sich mit der Zeit verstärken. Auch im Raman-Spektrum für die Langzeitexperimente (nach 1 h bzw. 1 d) ist die Zunahme der Intensitäten für die *peaks* des S₄N₄ zu beobachten bzw. die Abnahme der *peaks* für die S-N-Streckschwingung.

Abbildung C7Raman-Spektrum: Aufspaltung der S-N-Streckschwingung beiZugabe von Br⁻ zu NSCl₂⁻.

Beide Befunde zusammengenommen lassen vermuten, dass sich zum einen die gemischthalogenierten NSClBr- (13) bzw. NSBr2- (14) Anionen bilden, zum anderen aber sich in diesem Reaktionsgemisch unter Bildung von S₄N₄ zersetzen. Ähnliche Ergebnisse lieferte die Reaktion von (NSCl)₃/NSCl mit Br-, in der die Bildung von NSCl₂⁻ bzw. 13 im Raman-Experiment bzw. die Bildung von NSCl₂⁻, S_4N_4 und vermutlich S_2N_2 (2) im ¹⁴N-NMR-Experiment beobachtet wurde. Die Bildung von 2 wird aus einem Signal bei 59 ppm geschlossen, da Reaktionen mit Übergangsmetallen zu S₂N₂ verbrückten zweikernigen Metallkomplexen führen $(M(\mu - (SN)_2)M, s.u.)$ und sich je nach Versuchsbedingungen polymeres $(SN)_x$ bildet. Bedauerlicherweise stehen bisher keine NMR-Vergleichsdaten zur Verfügung. Die Bildung von NSCl₂⁻ bzw. NSClBr⁻ beweist den Cl/Br-Austausch in diesen Anionen. Da die Intensität der S-N-Streckschwingung, v(SN), von NSCl₂⁻ für diese Reaktion wesentlich größer ist als die von NSCIBr nehmen wir an, dass NSCl2 thermodynamisch stabiler ist. Die analogen Reaktionen mit Γ führten zu den selben Zerfallsprodukten. Die Bildung von S₄N₄ sowie S₂N₂ wurde ebenso im Raman- als auch im ¹⁴N-NMR-Experiment beobachtet. Dagegen konnte nur die Bildung von geringen Mengen an NSCl₂⁻ jedoch nicht die Bildung von NSClI⁻ (16) bzw. NSl₂⁻ (16) beobachtet werden. Neben der Bildung von S₄N₄ im Festkörper konnte auch die Bildung von $[PPh_4]^+[I_3]^-$ (durch Einkristallröntgenstrukturanalyse) verifiziert werden. Die Bildung von S₄N₄ bei der Umsetzung von (NSCl)₃ mit Br⁻ ist bereits in der Literatur beschrieben worden.^[13b] Interessanterweise bildet sich je nach Reaktionsbedingungen für die Br⁻ und die Γ Reaktion entweder vorwiegend S₄N₄ (0 °C, Fällen mit Benzol oder Hexan) oder aber vorwiegend polymeres (SN)_x (hohe Temperaturen, schnelles Abziehen des CH₂Cl₂) als Zerfallsprodukte. Die Bildung von (SN)_x lässt auch auf das Auftreten von S₂N₂ (beobachtet im ¹⁴N-NMR-Experiment) schließen, von dem bekannt ist, dass es langsam zu (SN)_x polymerisiert.^[49]

Die Bildung von S₂N₂ ist auch von Dehnicke *et al.* in der Reaktion von (NSCl)₃ im Beisein einer Lewis-Säure z.B. NbCl₅ beobachtet worden, wobei ein Cl₅Nb(μ -(SN)₂)NbCl₅-Addukt gebildet wird (Abbildung C9).^{[52b,53].} Analog reagiert auch NSCl₂⁻ mit NbCl₅ zu dem selben Addukt, wobei im ersten Schritt eine Cl⁻ Abstraktion stattfindet und sich NSCl bildet (¹⁴N-NMR Experiment).

SNX_2^-	SNF_2^-	$SNCl_2^-$	SNBr_2^-	SNI_2^-		
v (SN)	1381(103/27)	1365(88/86)	1357(84/141)	1334(93/256)		
$\nu_{s}\left(SX\right)$	596(191/6)	299(145/1)	271(127/1)	258(112/1)		
v_{as} (SX)	485 (177/4)	278(41/13)	216(19/5)	178(11/3)		
$\delta_{s}\left(NSX_{2}\right)$	380 (27/9)	199(16/15)	156(7/18)	132(3/23)		
$\delta_{as}\left(NSX_{2}\right)$	276(0/6)	169(64/11)	127(72/7)	112(63/7)		
δ(XSX)	243(0/1)	62(1/12)	35(0/10)	25(0/13)		
SNXY ⁻	SNFC1 ⁻	SNFBr ⁻	SNFI [−]	SNClBr ⁻	SNCII ⁻	SNBrI ⁻
v (SN)	1372(85/76)	1374(81/148)	1369(94/264)	1363(86/116)	1353(99/168)	1347(92/193)
v (SX)	599(190/12)	613(192/20)	620(205/43)	296(26/11)	301(149/4)	268(124/1)
v (SY)	258(67/2)	207(42/2)	187(30/2)	237(26/11)	111(28/15)	115(47/11)
$\delta(NSX)$	360(15/7)	364(14/7)	365(13/9)	190(36/11)	223(18/15)	150(22/18)
$\delta(NSY)$	143(19/12)	99(7/9)	86(3/11)	130(34/12)	187(39/7)	198(15/5)
$\delta\left(XSY\right)$	94(4/3)	65(5/3)	56(3/4)	48(0/11)	44(0/12)	34(0/11)

Tabelle C4Berechnete Schwingungsdaten für NSXY⁻ (B3LYP).

^[a] IR-Intensitäten in km mol⁻¹; Raman-Aktivitäten in Å⁴ amu⁻¹.

^[b] Für H, F und Cl wurde ein 6-31G(d,p) Basissatz verwendet; für I ein ECP46MWB, Br ein

ECP28MWB Pseudopotential ^[50] und ein (5s5p1d)/[3s3p1d]-DZ+ P-Valenzbasissatz verwendet.^[51]

Zusammenfassend wurde experimentell festgestellt:

- durch Cl⁻/F⁻-Austausch ist es möglich das NSF₂⁻ aus NSCl₂⁻ in Lösung zu bilden;
- (ii) es wurde die Bildung von NSBrCl⁻ im Festkörper und Lösung und die Bildung von NSBr₂⁻ im Festkörper beobachtet, wobei diese Verbindungen sehr instabil sind und sehr schnell weiterreagieren;
- (iii) die NSX₂⁻-Salze (X = Br, I) zerfallen unter Bildung von S₄N₄ bzw. polymeren (SN)_x in Abhängigkeit von den Reaktionsbedingungen;
- (iv) die Polarität des Lösemittels besitzt einen großen Einfluss auf den Zerfall von Thiazyldichlorid und die Zerfallsprodukte.

C2.3 Struktur

Die berechneten Strukturparameter für alle untersuchten Verbindungen sind in Tabelle C5 zusammengefasst (Siehe auch Vergleich mit experimentellen Daten für $NSCl_2^-$ in Kapitel C1). Der Vergleich zwischen den CCSD(T)- und B3LYP-Ergebnissen ergibt eine gute Übereinstimmung, wobei die S-N-CCSD(T)-Bindungslängen etwas größer (größte Abweichung 0.016 Å) als die auf B3LYP-Niveau berechneten sind.

Die Rechnungen zeigen, dass die S-N-Bindungslänge in allen NSX und NSX₂⁻ bzw. (NSXY)⁻ nahezu unverändert bei 1.46 bis 1.47 Å (B3LYP) bzw. 1.47 bis 1.48 Å (CCSD(T)) liegt und nur sehr wenig zunimmt entlang F < Cl < Br < I. Lediglich bei NSH und NSH₂⁻ (**11**) ist sie mit 1.52 bzw. 1.53 Å deutlich größer. Alle S-X-Bindungen sind sehr schwach und die Bindungslängen sind wesentlich größer als die Summe der Kovalenzradien (d_{kov} [S-X]; X = F: 1.68 vs. 1.81, Cl: 2.03 vs. 2.54; Br: 2.18 vs. 2.73; I: 2.37 vs. 2.98Å). Wie erwartet ist für alle NSX₂⁻ der S-X-Abstand um ca. 0.13 (X = F) bis 0.32 A (X =I) größer als in den neutralen Monohalogeniden (XNS).

B3LYP						CCSD(T)				
	S-N	S-X		N-S-X		X-S-X	S-N	S-X	N-S-X	X-S-X
NSH	1.517	1.427		111.1			1.523	1.413	111.3	
NSH_2^-	1.520	1.564		118.6		77.4	1.530	1.553	118.5	77.2
NSF	1.458	1.681		117.2			1.468	1.689	117.0	
$\mathrm{NSF_2}^-$	1.463	1.811		113.7		87.30	1.469	1.808	113.3	86.9
NSCI	1.466	2.239		118.7			1.480	2.245	117.8	
NSCI -	1 464	2 530		114.4		107.2	1 474	2 553	112.2	100 /
NSCI ₂	1.404	2.339		114.4		107.2	1.4/4	2.335	113.2	109.4
NSBr	1.469	2.403		118.4			1.483	2.427	117.6	
$NSBr_2^-$	1.466	2.723		114.1		110.8	1.476	2.737	113.0	111.8
NSI	1.474	2.656		119.3			1.490	2.702	118.1	
NSI_2^-	1.471	2.979		115.0		112.7	1.484	2.986	114.2	108.5
			S-Y	N-S-X	N-S-Y	X-S-Y				
NSFCl⁻	1.462	1.744	2.748	113.9	116.7	95.7				
NSFBr ⁻	1.462	1.730	3.036	114.3	116.7	96.8				
NSFI ⁻	1.462	1.723	3.345	114.5	117.4	97.5				
NSClBr ⁻	1.465	2.493	2.779	114.6	113.8	109.0				
NSCII ⁻	1.467	2.465	3.066	115.1	114.6	108.0				
NSBrI⁻	1.468	2.688	3.017	114.6	114.6	110.9				

Tabelle C5BerechneteStrukturparameterfürNSX, NSX_2^- und $NSXY^-$ (Abstände in [Å], Winkel in [°]). [a]

^[a] Für H, F und Cl wurde ein 6-31G(d,p) Basissatz verwendet; für I ein ECP46MWB, Br ein ECP28MWB Pseudopotential ^[50] und ein (5s5p1d)/[3s3p1d]-DZ+P-Valenzbasissatz verwendet.^[51] In Abbildung C8 ist ein Schnitt durch die Elektronendichte NSCI-Ebene in NSCl₂⁻ stellvertretend für alle NSX₂⁻-Spezies dargestellt. Im Einklang mit den berechneten Strukturdaten (lange S-X- bzw. S-Y-Bindungslängen, kurze S-N-Bindungen zeigt die Elektronendichteverteilung in der NSCl Ebene viel Elektronendichte zwischen der S-N-Bindung und nur wenig zwischen der S-Cl-Bindung. Dies deutet daraufhin, dass die ionischen Verbindungen NSX₂⁻ bzw. NSXY⁻ am besten als NS⁺ X⁻ Y⁻ mit schwachen kovalenten S-X- bzw. S-Y-Wechselwirkungen beschrieben werden sollten.

Bei den gemischthalogenierten Verbindungen NSXY⁻ ist ein interessanter Trend festzustellen; während sich die S-X-Abstände verkürzen, verlängert sich der S-Y Abstand (X elektronegativer als Y) im Vergleich zu den gleichartig substituierten NSX₂⁻-Anionen. Dies steht im Einklang mit dem Konzept der Vier-Elektronen-Drei-Zentren-Bindung (siehe Kapitel C1); je elektronegativer das Halogen, desto stärkere Vier-Elektronen-Drei-Zentren-Bindungen entstehen. Wenn X ungleich Y in NSXY⁻ ist, dann stehen beide Vier-Elektronen-Drei-Zentren-Bindungen in Konkurrenz, wobei die Vier-Elektronen-Drei-Zentren-Bindungen, in welche das elektronegativere Halogen (X) involviert ist, von der "Schwäche" der zweiten Vier-Elektronen-Drei-Zentren-Bindung, in welche das elektropositivere Halogen (Y) involviert ist, partizipiert und dadurch kürzere Bindungslängen für S-X und längere für S-Y gefunden werden (Siehe auch Bindung in NSXY⁻). Die N-S-X-Winkel sind vom Halogen wenig beeinflusst und liegen bei 113 bis 115°. Der X-S-X-Winkel nimmt von X = H zu X = Br kontinuierlich von 77.4° auf 112.7° (B3LYP) zu.

C2.4 Thermodynamik

In Tabelle C6 sind die berechneten thermodynamischen Daten für die Bildung der NSX_2^- - und $NSXY^-$ -Anionen zusammengefasst. Thermodynamisch (Gleichung C7) stabil bezüglich der Bildungsreaktion sind alle betrachteten Verbindungen.

$$NSX + Y^{-} \longrightarrow (NSXY)^{-}$$

$$X = F, Cl, Br, I Y = F, Cl, Br, I$$
(C7)

Alle Reaktionen sind exotherm, wobei die Fluor-Verbindungen erwartungsgemäß die kleinsten freien Reaktionsenthalpien und die Iod-Verbindungen die größten besitzen. Überraschend niedrig ist auch die freie molare Reaktionsenthalpie für die Bildung von NSH_2^{-} .

	CCSD(T)	B3LYP							
	ΔE	ΔE		$\Delta_{ m R} H_{298}$		$\Delta_{ m R}G_{298}$			
NSH_2^-	-66.6	-71.6		-69.7		-62.3			
NSF_2^-	-75.4	-81.6		-81.0		-72.9			
$NSCl_2^-$	-30.3	-36.1		-35.7		-29.1			
$\mathrm{NSBr_2}^-$	-23.1	-26.5		-26.2		-20.0			
NSI_2^{-}	-20.8	-24.5		-24.2		-18.2			
		$SNX + Y^{-}$	$SNY + X^{-}$	$SNX + Y^{-}$	$SNY + X^{-}$	$SNX + Y^{-}$	$SNY + X^{-}$		
		$\rightarrow \text{SNXY}^-$	$\rightarrow \text{SNYX}^-$	$\rightarrow \text{SNXY}^-$	$\rightarrow \text{SNYX}^-$	$\rightarrow \text{SNXY}^-$	$\rightarrow \text{SNYX}^-$		
NSFCl ⁻	-	-23.4	-104.7	-23.1	-104.7	-16.4	-96.7		
NSFBr ⁻	-	-10.7	-110.7	-10.4	-110.0	-4.1	-103.1		
NSFI ⁻	-	-8.4	-114.0	-8.1	-113.2	-2.1	-106.3		
$NSClBr^{-}$	-	-18.9	-37.6	-18.6	-37.2	-12.2	-30.8		
NSCII ⁻	-	-15.5	-39.8	-15.2	-39.4	-9.1	-32.9		
NSBrI⁻	-	-22.8	-28.4	-22.5	-28.0	-16.4	-21.7		

Tabelle C6Thermodynamische Daten f
ür die Bildung der NSX_2^- - und $NSXY^-$ -
Anionen (kcal mol⁻¹).^[a,b]

^[a] X elektronegativer als Y.

^[b] Für H, F und Cl wurde ein 6-31G(d,p) Basissatz, für I ein ECP46MWB, Br ein ECP28MWB Pseudopotential^[50] und ein (5s5p1d)/[3s3p1d]-DZ+P-Valenzbasissatz verwendet.^[51]

C2.5 Bindung

Alle NSXY--Verbindungen repräsentieren hoch-polarisierte Moleküle, wobei die Polarisation der S-N- bzw. S-X-Bindung von den F-Verbindungen zu den I-Verbindungen abnimmt. Die Bildungsreaktion (NSX + Y⁻) entspricht einer Donor-Acceptor-(charge transfer)-Reaktion, die barrierefrei verläuft. Der Ladungstransfer zeigt keinen eindeutigen Trend (F: 0.386, Cl: 0.374, Br: 0.379 und I: 0.409e); für die F-, Cl- und Br-Verbindungen ist er ziemlich gleich, während er im NSI2⁻ etwas größer ist. Für das NSH2-Anion findet man einen wesentlich größeren Ladungstransfer von 0.79e. Interessanterweise beobachtet man in den gemischthalogenierten NSXY⁻-Anionen für das elektronegativere Halogen (X) eine positivere Partialladung als für das elektropositivere Halogen (Y), was auf einen größeren Ladungstransfer des elektronegativeren Halogens hinweist (Tabelle C7). Wie schon in Kapitel C1 erläutert, lässt sich die Bindungssituation in den NSX₂⁻-Verbindungen am einfachsten durch zwei Vier-Elektronen-Drei-Zentren-Bindungen mit "geschwächten" S-X- und S-Y- σ -Bindungen und "geschwächten" S-N- π_x - und π_y -Bindungen beschreiben (Abbildung C3).

Der Vergleich der a''- und a' π -MOs verdeutlicht die zunehmende Schwächung der Vier-Elektronen-Drei-Zentren-Bindungen, da die Überlappung entlang der Reihe F > Cl > Br > I abnimmt (Abbildung C9).
Partialladung	en	NSF_2^-	$NSCl_2^-$	NSBr ₂ ⁻	NSI_2^-	NSFC	NSFBr ⁻	NSFI⁻	NSClBr [−]	NSCII⁻	NSBrΓ
N		-1.00	-0.68	-0.63	-0.60	-0.82	-0.77	-0.76	-0.65	-0.64	-0.62
S		1.23	0.93	0.87	0.79	1.14	1.13	1.12	0.90	0.87	0.83
Х		-0.61	-0.63	-0.62	-0.59	-0.56	-0.55	-0.54	-0.59	-0.57	-0.59
Y		-0.61	-0.63	-0.62	-0.59	-0.76	-0.81	-0.82	-0.66	-0.66	-0.62
Donor-Accept Energien ^[a]	or-										
$E_1^{(2)[b]}$	X:	70.5	30.9	27.5	25.2	123.9	127.9	130.9	52.5	61.0	41.8
	Y:	70.5	30.9	27.5	25.2	0.4	0.1	0.1	10.2	4.9	12.0
$E_2^{(2)[c]}$	X:	37.9	15.9	10.7	6.3	2.6	1.7	0.5	3.0	0.8	2.0
	Y:	37.9	15.9	10.7	6.3	24.1	15.2	11.1	22.9	21.6	16.5
$E_1^{(2)} + E_2^{(2)[d]}$	X:	108.4	46.8	38.2	31.5	126.5	129.6	131.4	55.5	61.8	43.8
	Y:	108.4	46.8	38.2	31.5	24.5	15.3	11.2	33.1	26.5	28.5
$\Sigma E^{(2)} [NS^+ \rightarrow X$	_]	4.2	1.5	2.2	2.4	_	_	_	_	_	_
$\Sigma E^{(2)} [X \rightarrow SN]$	+]	160.3	61.2	47.6	38.5	_	_	_	_	_	_
Total E ⁽²⁾		164.5	62.7	49.8	40.9	_	_	_	-	_	_

Partialladung und Donor-Acceptor-Energien (kcal mol⁻¹) für alle NSXY⁻-Spezies (X = Y und wenn X \neq Y dann X = Tabelle C7 elektronegativeres Halogen).

^[a] Molekül liegt auf der z-Achse. ^[b] $E_1^{(2)} \Rightarrow p\text{-LP}(X \text{ oder } Y) \rightarrow \pi_x^*(NS).$ ^[c] $E_2^{(2)} \Rightarrow p\text{-LP}(X \text{ oder } Y) \rightarrow \pi_y^*(NS).$ ^[d] $E_1^{(2)} + E_2^{(2)} = E_{1+2}^{(2)}.$

Abbildung C9 MO-Bild der Vier-Elektronen-Drei-Zentren-Bindungen.

Die NBO-Analyse für alle NSX_2^- bzw. $NSXY^-$ -Anionen legt eine ionische Lewis-Struktur (**F**, Abbildung C10) mit einem NS^+ und zwei X^- (bzw. X^- und Y^-) Fragmenten nahe. Die Populationen der d-AOs sind so gering, dass erweiterte

Valenzschalen-VB-Strukturen (unter d-Orbital-Beteiligung am S) nur in einem sehr geringen Maße zum Resonanzschema beitragen (Lewis-Struktur I). Die Untersuchung der nichtkovalenten Effekte zeigt zudem, dass es starke Wechselwirkungen der freien Elektronenpaare (p-LP, lokalisiert in p-AOs) an beiden Halogenatomen mit den zwei unbesetzten, antibindenden π^* -Orbitalen der SN-Dreifachbindung gibt (Tabelle C7). Diese intramolekulare p-LP(Cl) $\rightarrow \pi^*(NS)$ Donor-Acceptor-Wechselwirkung beschreibt die ziemlich langen S-X- bzw. S-Y-Bindungen und entspricht einer Resonanz zwischen den Strukturen $F \leftrightarrow G \leftrightarrow H$. Dabei kommt es zu einem Transfer von Elektronendichte in die π^* (N–S)-Orbitale, was zu einer Destabilisierung der S-N-Bindung führt. Die Stärke dieser Donorwirkung nimmt vom F⁻ zum I⁻ ab. Im Falle der gemischthalogenierten NSXY-Spezies nimmt die Donor-Acceptor-Wechselwirkung – verglichen mit der in den NSX₂⁻-Anionen – für das leichtere (elektronegativere) Halogen (X) zu und für das schwerere (elektropositivere) Halogen (Y) nimmt sie ab (z.B. NSCl₂⁻: $E_{1+2}^{(2)}(Cl) = 46.8$ vs. NSClBr⁻: $E_{1+2}^{(2)}(Cl) =$ 55.9 kcal mol⁻¹; NSBr₂⁻: $E_{1+2}^{(2)}(Br) = 38.2$ vs. NSClBr⁻: $E_{1+2}^{(2)}(Br) = 33.1$ kcal mol⁻¹; Tabelle C7). Die stärkste und schwächste Vier-Elektronen-Drei-Zentren-Bindung wird somit im NSFI⁻ gefunden: Die stärkste für die NSF-Einheit mit $E_{1+2}^{(2)}(F) =$ 131.4 und die schwächste für die NSI-Einheit mit $E_{1+2}^{(2)}(I) = 11.1$ kcal mol⁻¹. Dies steht im Einklang mit der zuvor diskutierten Konkurrenz zwischen den beiden unterschiedlichen Vier-Elektronen-Drei-Zentren-Bindungen in den gemischthalogenierten NSXY--Verbindungen in Bezug auf die strukturellen Auswirkungen. d.h. kürzere S-X-Bindungen bzw. längere S-Y-Bindungen, und erklärt quantitativ die Ursache für dieses Strukturphänomen. Der Unterschied ist am größten für die Fluorverbindungen bzw. wenn die Elektronegativitätsdifferenz zwischen X und Y am größten ist (z.B. für NSCII⁻ ist dieser Unterschied größer als für NSCIBr⁻).

Um die Donor-Acceptor-Wechselwirkung zwischen den Fragmenten NS⁺ und X⁻ näher zu untersuchen, wurde die Gesamtdonorwirkung von der NS⁺-Einheit mit den X⁻ ($\Sigma E^{(2)}$ [NS⁺ \rightarrow X⁻]) und umgekehrt berechnet ($\Sigma E^{(2)}$ [X⁻ \rightarrow SN⁺]). Diese Aufteilung der Gesamtwechselwirkung zwischen den beiden Fragmenten (NS⁺ und X⁻) zeigt – wie erwartet-, dass hauptsächlich die Orbitale des X⁻-Fragmentes als Donororbitale fungieren, während die SN⁺-Orbitale als Acceptor wirken (Tabelle C7). Die berechneten Donor-Acceptor-Energien sind am größten für NSF₂⁻ mit 160.3 kcal mol⁻¹ und nehmen entlang der Reihe Cl (61.2) > Br (47.6) > I (40.9 kcal mol⁻¹) sehr stark ab.

C2.6 NSH_2^-

Abbildung C11 Donor-Acceptor-Wechselwirkung in NSH₂⁻.

Interessant ist es, die NSX_2^- -Anionen mit dem NSH_2^- -Anion zu vergleichen. Die Bindungssituation in NSH_2^- ist grundsätzlich anders. Zum einen ist das NSH_2^- nicht so stark polarisiert (q(S)=0.541, q(N) = -1.124 und q(H) = -0.208e)), zum anderen findet die NBO-Analyse als günstigste Lewis-Formel eine Struktur mit einer N-S- und zwei S-H-Einfachbindungen sowie einem freien

Elektronenpaar am Schwefel und drei freien Elektronenpaaren – wovon zwei überwiegend p-AOs sind – am Stickstoff (I, Abbildung C10). Dies steht im Einklang mit der längeren S-N-Bindung in NSH_2^- von 1.52 Å (B3LYP) verglichen mit den S-

N-Bindungslängen in den NSX₂⁻-Spezies. Die Untersuchung der nichtkovalenten Effekte verdeutlicht ebenfalls das Vorliegen von zwei Vier-Elektronen-Drei-Zentren-Bindungen: Gefunden wurden starke Wechselwirkung zwischen den beiden freien Elektronenpaaren (p-AO) des N-Atoms mit den beiden antibindenden σ^* -Orbitalen der S-H-Bindungen (2 *p-LP1(N) $\rightarrow \sigma^*(S-H)$: 30.3 bzw. 2* p-LP2(N) $\rightarrow \sigma^*(S-H)$ 36.7 kcal mol⁻¹)). Diese Wechselwirkung entspricht einer Resonanz zwischen den Lewis-Strukturen I \leftrightarrow G \leftrightarrow H und beschreibt den π -Charakter in der S-N-Bindung sowie die Schwächung der S-H-Bindungen (Abbildung. C11)

C3 Umsetzung von Thiazyldichlorid mit Übergangsmetallverbindungen

C3.1 Einführung – Bisheriger Kenntnisstand

Bis heute sind eine extrem große Vielzahl an Übergangsmetallkomplexen mit Thiazylchlorid als Ligand synthetisiert worden. Die Darstellung erfolgt zumeist durch Umsetzung von (NSCl)₃ mit einem Metallchlorid. Auf diese Weise gelang z.B. die Synthese des NbCl₅·NSCl bzw. TaCl₅·NSCl Adduktes.^[52] Die S-N-Bindungslänge bleibt im Addukt im Vergleich zum freien NSCl-Molekül nahezu gleich, der S-Cl-Abstand vergrößert sich dagegen. Ähnliche Komplexe wurden auch mit Vanadium beobachtet.^[53] Durch Erwärmen dieser Addukte erfolgt die Umsetzung zu einem Cl₅M(μ -(SN)₂)MCl₅-Komplex. Hierbei verbrücken die Stickstoffatome des planaren N₂S₂-Systems die Metallzentren

Das Dischwefeldinitrid S_2N_2 ist der kleinste bisher bekannte SN-Heterocyclus.^[54] Das ringförmige SNSN entsteht beim Überleiten von gasförmigem S_4N_4 oder S_4N_3Cl über erhitzte Silberwolle bei 300°C im Vakuum. Das planare S_2N_2 ist kein klassischer 6 π -Hückel-Aromat. VB- und MO-Rechnungen haben gezeigt, dass S_2N_2 als *open shell*-Singulett-Diradikal aufzufassen ist.^[55]

Analog zur den oben genannten NSCI-Addukt-Strukturen gibt es eine Reihe von Übergangsmetallkomplexen dieses Typs mit Molybdän, Wolfram, Titan, Chrom, Antimon und Vanadium als Zentralatom mit unterschiedlichsten Liganden, unter anderem auch Carbonyl- und Nitrosylliganden.^[56] Zur Bildung dieser Komplexe als Nebenprodukte^[56] bei der Darstellung der MCl₅·NSCl-Addukte vermutet man folgenden Reaktionsweg:

$$3 \operatorname{MCl}_{5} + 4 (\operatorname{NSCl})_{3} \longrightarrow 3 \operatorname{S}_{4}\operatorname{N}_{4}\operatorname{Cl}[\operatorname{MCl}_{6}] + 3 \operatorname{Cl}_{2}$$

$$S_{4}\operatorname{N}_{4}\operatorname{Cl}[\operatorname{MCl}_{6}] + 3 \operatorname{MCl}_{5} \longrightarrow 2 (\operatorname{MCl}_{5})_{2} \operatorname{N}_{2}\operatorname{S}_{2} + \operatorname{Cl}_{2}$$
(C8)

In guten Ausbeuten gelingt die Synthese gemäß Gleichung C8 mit überschüssigem (NSCl)₃ in der Wärme. Ähnliche Komplexe mit verbrückenden SN-Liganden wurden auch bei Palladium beobachtet. Bei der Umsetzung von S₄N₄ mit $[Ph_4P]_2[PdCl_6]$ konnten die Komplexe $[PH_4P]_2[Cl_3Pd(\mu-(SN)_2)PdCl_3]$ (17) und $[PH_4P]_2[Cl_2Pd(\mu-(S_3N_2))PdCl_2]$ (18) kristallographisch charakterisiert werden.^[57]

Der Versuch, das NSCl₂⁻-Anion an Metallkomplexen zu stabilisieren, führte zu einigen interessanten Produkten. Eingesetzt wurden die Übergangsmetallkomplexe NbCl₅ (**19**), $[Cp_2Ti]^{2+}[AsF_6]_{2}^{-}$ (**20**), $[(NO)_2CrCp]^+ [AsF_6]^-$ (**21**) und der zweikernige Paladiumkomplex $[(Et_3P)ClPd(\mu-(Cl)_2)PdCl(PEt_3)]$ (**22**).

Der Komplex **22** wurde ausgewählt, da der Phosphorligand eine gute ³¹P-NMR-Sonde darstellt. Somit wäre es auf einfachem Wege möglich, den Reaktionsablauf in Lösung zu beobachten.

C3.2 Reaktion von $[PPh_4^+][NSCl_2^-]$ mit $[Et_3PClPd(\mu-(Cl)_2)PdClPEt_3]$

Bei der Reaktion von **22** mit [PPh₄]⁺[NSCl₂]⁻ wurde mit Hilfe der ³¹P-NMR-Spektroskopie die Bildung erheblicher Mengen von PEt₃ beobachtet. Die gewünschte Umsetzung nach Gleichung (C9)

$$22 + 2 [PPh_4][NSCl_2] \longrightarrow 2 \xrightarrow{Et_3P} Pd \xrightarrow{NSCl_2} + 2 PPh_4Cl \quad (C9)$$

gelang leider nicht. Stattdessen wurden die PEt₃-Liganden abgespalten, und es bildeten sich die Komplexe **17** und **18** (Abbildung C12).

Abbildung C12Ortep-Darstellung von $[Cl_3Pd(\mu - (SN)_2)PdCl_3]^{2-}$ und
 $[Cl_2Pd(\mu - (S_3N_2))PdCl_2]^{2-}$. Ellipsoide der thermischen
Schwingung mit 25% Aufenthaltswahrscheinlichkeit bei 200
(17) und 293 K (18). Bindungslängen in [Å].

Die Komplexe **17** und **18** wurden mit Hilfe der Raman-Spektroskopie und durch Röntgenbeugungsexperimente nachgewiesen. Diese Komplexe bilden sich nach Woollins et. al bei der Umsetzung von $[PPh_4]_2^+[Pd_2Cl_6]^{2-}$ mit S₄N₄.^[57b] Dieses Ergebnis legt nahe, dass das NSCl₂⁻ nicht stabil genug ist, um undissoziiert an das Zentralatom zu binden. Im ersten Schritt wird also sicherlich das Chlorid abgespalten und es liegt wieder ein Gleichgewicht zwischen NSCl und (NSCl)₃ vor. Weshalb die PEt₃-Liganden vollständig abstrahiert werden, ist nur schwer zu verstehen, da die Komplexe bei Zugabe von Lewisbasen im Normalfall nur an der Chlorbrücke getrennt werden. Aus diesem Grunde ist für die PEt₃-Abstraktion ein NSX/NSX₂-Komplex oder ähnliches als Zwischenstufe denkbar, der die Substitution des PEt₃-Liganden möglicherweise erleichtert.

C3.3 Reaktion von $[PPh_4^+][NSCl_2^-]$ mit NbCl₅, $[Cp_2Ti]^{2+}[AsF_6]_2^-$ und $[CpCr(NO)_2]^+[AsF_6]^-$

Die Umsetzung von $[PPh_4]^+[NSCl_2]^-$ mit den Übergangskomplexen **19-21** führte zu den Verbindungen $Cl_5Nb(\mu-(SN)_2)NbCl_5$ (**23**), Cp_2TiCl_2 (**24**) und $CpCr(NO)_2Cl$ (**25**). Es wird auch hier, wie bei der Reaktion mit **22** ein Chlorid-Ion abgespalten. Im ¹⁴N-NMR-Spektrum konnte dies durch das Auftreten der Resonanzen des NSCl/(NSCl)_3-Gleichgewichts beobachtet werden.

Nimmt man an, dass ein [Cl₅NbNSCl₂]⁻-Addukt als kinetisch kontrolliertes Produkt existiert und sich nur bei höheren Temperaturen unter Chloridübertragung [NbCl₆]⁻ und NSCl ausbildet, so sollte bei tiefen Temperaturen das gewünschte Produkt zu beobachten sein. Daher wurde die Reaktion von NbCl₅ (**19**) und dem NSCl₂⁻-Anion bei –78 °C im Trockeneisbad durchgeführt.

Bei dieser Reaktion lässt sich im Tieftemperatur (-50° C bis -10° C) ¹⁴N-NMR-Spektrum neben dem Edukt ein neues Signal bei $\delta = 197$ ppm bis 201 ppm (je nach Temperatur variiert sowohl die Verschiebung als auch die Schärfe des Signals) erkennen. Dieses Signal kann dem SN⁺-Kation zugeordnet werden. Ein Raman-Spektrum bei RT zeigt wieder die bekannten Signale des [NbCl₆]⁻. Nach längerem Warten verschwindet das NMR-Signal bei $\delta = 201$ ppm. Vermutlich liegt aufgrund der schlechteren Löslichkeit von [PPh₄]⁺[NSCl₂]⁻ ein Überschuss an NbCl₅ bei tiefen Temperaturen vor. Beim langsamen Auftauen auf Raumtemperatur bilden sich feuchtigkeitsempfindliche Kristalle von **23** (Abbildung C9). Aufgrund des Auftretens von SN⁺ in Lösung und bei tiefen Temperaturen ist die Ausbildung von NSCl und (NSCl)₃ thermodynamisch vermutlich ungünstiger. Erst beim Auftauen reagiert das NS⁺-Kation mit NbCl₆⁻ zu NSCl und NbCl₅ und entsprechend Gleichung C8 zu **23**.

Neben dem Auftreten der Edukte **24** und **25** wurde, wie oben schon erwähnt, bei der Umsetzung mit NbCl₅ der mit dem $(SN)_2$ -Ring verbrückte zweikernige Nb-Komplex (**23**) erhalten. Dieser Komplex wurde durch ein Raman-Spektrum und eine Röntgenstrukturanalyse an Einkristallen charakterisiert. Das Auftreten dieses Komplexes wurde von K. Dehnicke *et. al* bei der Umsetzung von NbCl₅ mit (NSCl)₃ beobachtet, bisher jedoch nur durch ein IR-Spektrum charakterisiert. Ein möglicher Weg zur Bildung dieser Art von Komplexen wurde schon in Gleichung C8 aufgeführt (s.o.). Neben der direkten Umsetzung von NSCl₂⁻ (Gleichung C10) wurde auch versucht, über die Bildung von NbCl₅NSCl und anschließender Umsetzung mit [PPh₄]⁺Cl⁻ zu dem gewünschten Produkt zu kommen (Gleichung C11).

$$[Ph_4P]^+[NSCl_2]^- + NbCl_5 \xrightarrow{RT, CH_2Cl_2} [PPh_4]^+[Cl_5NbNSCl_2]^- (C10)$$

$$(NSCl)_3 + 3 NbCl_5 \xrightarrow{RT, CH_2Cl_2} 3 Cl_5NbNSCl \xrightarrow{3 [PPh_4]^+Cl^-} (C11)$$

 $3 [PPh_4]^+[Cl_5NbNSCl_2]^-$

Das Addukt NbCl₅·NSCl reagiert bei Zusatz von Chloridanionen mit Abspaltung des NSCl-Liganden. Dabei bildet sich das freie Monomer NSCl und der [NbCl6]-Komplex. Diese Reaktion konnte mittels ¹⁴N-NMR- und Raman-Spektroskopie nachgewiesen werden. Die NMR-Spektren zeigen Verschiebungen bei $\delta = 330$ (NSCl) sowie mit geringer Intensität bei $\delta = -259$ (NSCl)₃ aus entsprechendem Gleichgewicht. Die Raman-Spektren weisen neben den peaks des Tetraphenylphosphoniums noch drei Banden bei $v = 377 \text{ cm}^{-1}$, 347 und 178 auf, welche eindeutig dem Hexachloroniobat zugeschrieben werden können. Dies steht im Einklang mit den Ergebnissen von Dehnicke et. al.^[52b,53]

C3.3.1 Kristallstrukturanalyse von $Cl_5Nb(\mu-(SN)_2)NbCl_5$ (23)

Der Niob-Komplex $Cl_5Nb(\mu-(SN)_2)NbCl_5$ (23) kristallisiert in der triklinen Raumgruppe $P\bar{1}$ mit vier Molekülen in der Elementarzelle. Die $(SN)_2$ -Ringe der zwei unabhängigen Moleküle stehen fast senkrecht zueinander (88.75°). Die Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von 23 und die Atomkoordinaten und Auslenkungsparameter sind im Anhang aufgeführt. In Tabelle C8 sind die wichtigsten Bindungslängen und -winkel zusammengefasst.

Nb(1)–Cl(1)	2.243(13)	Nb(2)–N(2)	2.21(2)
Nb(1)–N(1)	2.28(2)	Nb(2)–Cl(7)	2.30(2)
Nb(1)–Cl(4)	2.30(2)	Nb(2)–Cl(9)	2.31(2)
Nb(1)–Cl(2)	2.31(2)	Nb(2)–Cl(8)	2.31(1)
Nb(1)–Cl(3)	2.31(1)	Nb(2)–Cl(10)	2.357(13)
Nb(1)–Cl(5)	2.359(14)	Nb(2)–Cl(6)	2.243(13)
S(1)–N(1)	1.632(13)	S(2)–N(2)	1.645(13)
S(1)–N(2)	1.639(9)	S(2)–N(1)	1.648(10)
Cl(1)–Nb(1)–N(1)	179.1(3)	S(1)-N(1)-Nb(1)	133.1(5)
N(1)-Nb(1)-Cl(4)	84.6(3)	S(2)–N(1)–Nb(1)	132.4(5)
N(1)-Nb(1)-Cl(3)	77.7(2)	N(1)-S(1)-N(2)	86.0(5)
Cl(1)-Nb(1)-Cl(4)	94.8(2)	N(2)-S(2)-N(1)	85.3(4)

Tabelle C8Ausgesuchte Bindungslängen [Å] und -winkel [°] von 23.

Wie aus Abbildung C13 ersichtlich, ist jedes Niob-Atom oktaedrisch von fünf Chloroliganden und einem Stickstoffatom des $(SN)_2$ -Ringes umgeben. Der Oktaeder ist aufgrund von intra- und intermolekularen Wechselwirkungen zwischen den Chlor-Atomen und den Schwefel-Atomen stark verzerrt. Die intra- und intermolekularen Abstände (3.084 bis 3.542 Å) liegen deutlich unter der Summe der van-der-Waals-Radien von Chlor und Schwefel ($r(S)_{vdW} = 1.8$ Å, $r(CI)_{vdW} = 1.81$ Å).^[5b,58,99] Die äquatorialen Chloroliganden neigen sich zum Schwefel der (SN)₂-Ringe und bilden Winkel von 77.6° bis 85.8° zwischen den Stickstoff-Atomen und den Niob-Atomen. Der Mittelwert der axialen Chlor-Niob-Abstände liegt mit 2.241 Å deutlich unter dem Mittelwert der äquatorialen Chlor-Niob-Abstände von 2.322 Å. Dies kann zum einen durch die starken Cl-S-Wechselwirkungen und zum anderen durch den möglichen *trans*-Einfluß der Stickstoff-Atome erklärt werden.

Abbildung C13Molekülstruktur von 23. Ellipsoide der thermischen
Schwingung mit 25% Aufenthaltswahrscheinlichkeit bei 293 K.

Der (SN)₂-Ligand ist planar. Die NbCl₅-Einheiten sind zwischen 17 und 20° gegeneinander verdreht (Abbildung C14). Ein Komplex analoger Struktur wurde 1969 mit Antimon als Zentralatom publiziert.^[59]

Abbildung C14 Ansicht von 23 entlang der Nb-Nb-Achse.

C3.4 Zusammenfassung

Aus den Ergebnissen der Umsetzung des NSCl₂⁻-Anions mit verschiedensten Übergangsmetallkomplexen kann folgendes geschlossen werden:

- (i) die Chloro-Liganden des NSCl₂⁻-Anions sind, wie schon aus den Rechnungen und Strukturdaten in Kapitel C1 hervorgeht, sehr schwach an den Schwefel gebunden, wodurch eine Cl⁻-Abstraktion begünstigt wird.
- (ii) keiner der verwendeten Übergangsmetallkomplex ist in der Lage, das NSCl₂⁻-Anion ohne Zersetzung zu stabilisieren;
- (iii) die Reaktion mit Übergangsmetallchloriden forciert die Zersetzung des NSCl₂⁻-Anions zu S₂N₂, S₃N₂²⁻ bzw. S₄N₄ und Cl₂.

Das Reaktionsverhalten des NSCl₂⁻-Anions entspricht aufgrund der leichten Cl⁻-Abstraktion in vielen Fällen dem Verhalten der Chemie des NSCl/(NSCl)₃-Gleichgewichtes.

C4 Umsetzung von [PPh₄]⁺[NSCl₂]⁻ mit elementarem Schwefel

Ziel dieser Versuche ist es, herauszufinden, ob das Thiazyldichlorid in der Lage ist, sich an den Ring des elementaren Schwefels anzulagern bzw. ihn aufzubrechen. Die Versuche werden sowohl mit 1:1 Stöchiometrie als auch mit deutlichem Schwefelüberschuß durchgeführt. Es zeigt sich allerdings, dass das Thiazyldichloridanion nicht elektrophil genug ist, um den Schwefelring anzugreifen. Zieht man die Reaktionslösung im Vakuum trocken und misst ein Raman-Spektrum, so ergeben sich ausschließlich die Signale des Eduktes sowie zusätzlich drei Banden, die eindeutig dem elementaren Schwefel zugeordnet werden können. Im ¹⁴N-NMR-Spektrum zeigen sich neben dem Signal des Eduktes $NSCl_2^-$ bei $\delta = 152$ noch sehr geringe Mengen an S₄N₄ (δ = -258). Die sehr schwachen Signale bei δ = -57, sowie $\delta = -127$ könnten zum einen zum S₂N₂ und vermutlich einer Zwischenstufe zum S₄N₄ zugeordnet werden. Die Signale nehmen etwas zu, wenn mit Schwefelüberschuss gearbeitet wird. Kristalle konnten bisher leider nicht erhalten werden, um diese Produkte genauer zu identifizieren. Diese Ergebnisse zeigen, dass der Schwefel nur die Zersetzung des NSCl₂⁻-Anions etwas beschleunigt.

D Pseudohalogenchemie des s-Triazins

D1 Einführung – Bisheriger Kenntnisstand

Die Chemie der Halogen- und Pseudohalogen-Triazine wird seit mehr als 100 Jahren sowohl in der organischen wie auch in der anorganischen Chemie intensiv erforscht. Ein Grund für das große Interesse an der Chemie ist die große Vielfalt an Verbindungen und deren weitreichenden technischen Einsatzmöglichkeiten. Die Anwendungen erstrecken sich, um nur einige zu nennen, von der Polymerchemie (X = NCO, NCS) über die Chemie der Sprengstoffe (X = N₃) bis hin zur Verwendung in der Schädlingsbekämpfung und Farbstoffindustrie (X = NCS, Cl, F).^[60]

D2 Reaktion von 2,4,6–Triazido–1,3,5–triazin mit Triphenylphosphan

D2.1 Einführung – Bisheriger Kenntnisstand

Bei der Untersuchung der Reaktion von Phenylazid mit Triphenylphosphan in Ether postulierten Staudinger und Meyer^[61] die Bildung eines instabilen Phosphazids als nicht isolierbare Zwischenstufe. Diese Zwischenstufe wandelt sich unter spontaner Stickstoffabgabe in das stabile Triphenylphosphanophenylimin um (Gleichung D1).

$$C_6H_5N_3 + P(C_6H_5)_3 \xrightarrow{Et_2O} C_6H_5-NNN-P(C_6H_5)_3 \xrightarrow{-2N_2} C_6H_5NP(C_6H_5)_3$$
 (D1)

W. Kesting^[62] untersuchte 1907 erstmals die Reaktion von Cyanurazid (2,4,6-Triazido-1,3,5-triazin) mit Triphenylphosphan. Seit dieser Zeit besteht ein beachtliches Interesse an der Reaktivität und dem explosiven Charakter von Cyanurazid (**26**) und seinen Derivaten.^[63] Von Kesting wurde die Bildung von 2,4– Bis(triphenylphosphanimino)–6–azido–1,3,5–triazin (**28**) vorgeschlagen, obwohl das Produkt, ungeachtet der Azidgruppe, weder Hitze- noch Schlagempfindlichkeit zeigte (Gleichung D2).

$$(N_{3}CN)_{3} + 2 P(C_{6}H_{5})_{3} \xrightarrow{Et_{2}O} \underbrace{N}_{-2 N_{2}} \xrightarrow{N}_{N} \underbrace{N}_{N} \xrightarrow{N}_{N} P(C_{6}H_{5})_{3} (D2)$$
26
28

Es ist bekannt, dass Azidgruppen, die an einem Kohlenstoffatom gebunden sind, mit zu diesem benachbarten Stickstoffatomen spontan zu Tetrazolen cyclisieren können. Im überwiegenden Teil der Fällen liegt ein Gleichgewicht zwischen Tetrazol- und Azidform vor. Diese von Huisgen als 1,5-dipolare Cyclisierung^[64] definierte Azid-Tetrazol-Isomerisierung ist und war Gegenstand zahlreicher wissenschaftlicher Untersuchungen.^[65] Nach Huisgen gelten unter anderem folgende Regeln für Cycloadditionen:

- (i) Cycloadditionen sind Ringschlüsse, bei denen die Zahl der σ-Bindungen erhöht wird.
- (ii) Cycloadditionen sind nicht mit der Eliminierung kleiner Moleküle oder Ionen verbunden. Das Cycloaddukt entspricht der Summe der Komponenten.
- (iii) Cycloadditionen vollziehen sich ohne Aufbrechung von σ -Bindungen.
- (iv) Cycloadditionen können intramolekular ablaufen, wenn eine Molekel die nötigen funktionellen Gruppen beherbergt.

Das Azid-Tetrazol-Gleichgewicht ist sowohl in Lösung als auch in der Schmelze bekannt und wurde eingehend untersucht.^[66] Die Lage des Gleichgewichts ist sehr stark von der Art des Lösemittels, der Temperatur und der Natur der Substituenten abhängig.^[67] Die bei der Ringschlußreaktion auftretende Umverteilung der Elektronendichte wurde schon von mehreren Forschungsgruppen diskutiert.^[68]

D2.2 Ergebnisse und Diskussion

Die bei der Reaktion von Triphenylphosphan mit **26** möglichen Gleichgewichte zwischen den Tetrazolen und den Aziden ergeben sich aus Abbildung D1. Die Untersuchung dieses Gleichgewichts zeigte, dass die auftretenden Reaktionsprodukte stark abhängig von den Reaktionsbedingungen und der Stöchiometrie der eingesetzten Edukte sind. Entsprechend der Stöchiometrie konnten die Produkte 2,4,6–Tris-(triphenylphosphanimino)–1,3,5–triazin (**29**), 2–Triphenylphosphanimino–4–azidotetrazolo[5,1-*a*]–[1,3,5]triazin (**31**) und 2,4–Bis(triphenylphosphanimino)tetrazolo-[5,1-*a*]–[1,3,5]triazin (**32**) isoliert werden.^[60a, b]

Abbildung D1Reaktionsdiagramm von PPh3 mit 26 und die Gleichgewichte
zwischen den Tetrazol- und Azidisomeren.

Bei der Zugabe von einem Äquivalent Triphenylphosphan zu einer Lösung von **26** in Ether bildet sich ein gelb-grünes Intermediat. Diese farbige Zwischenstufe wird dem nicht zu isolierenden Phosphazid (R–NNN–P(C₆H₅)₃, mit R = Diazidotriazin) zugeschrieben. Das gebildete Phosphazid reagiert sofort unter Stickstoffabgabe weiter zum Monophosphaniminodiazid (**27**). *Ab-initio*-Rechnungen ergaben eine exotherme Reaktion mit $\Delta E[B3LYP/6-31G(d)//PM3] = -72$ kcal mol⁻¹. ³¹P-NMR- Messungen legten die teilweise Umwandlung des Azids in die Tetrazolisomere **30** und **31** nahe, wobei die Bildung von **30** auf Grund der durchgeführten Rechnungen wahrscheinlich geringer ist als die von **31**, da dieses um ca. 7.5 kcal mol⁻¹ (B3LYP/6-31G(d)//PM3) stabiler ist. Die Ringbildung **27** \rightarrow **31** repräsentiert eine "echte" Gleichgewichtsreaktion mit K_{exp}(298 K, CDCl₃) = 2.6, siehe auch Kapitel Tetrazol *vs.* Azid und Tabelle D1). Abhängig vom Niveau der Rechnungen ergibt sich eine freie molare Enthalpie von ±2 kcal mol⁻¹ (Δ E[B3LYP/6-31G(d)] = -0.25 kcal mol⁻¹; Δ E[B3LYP/6-31G(d)//PM3] = 1.31 kcal mol⁻¹), die in sehr guter Übereinstimmung mit den experimentell ermittelten Werten aus ³¹P-NMR-Messungen von -0.57 kcal mol⁻¹ steht.^[69,70]

Aufgrund der IR- und Ramandaten wurde bei **31** auf das Vorliegen einer Azidgruppe im Molekül geschlossen (2146 cm⁻¹ (Raman, v_{as} -N₃) und 2150 cm⁻¹ (IR, v_{as} -N₃, stark)). Die Untersuchung von zur Röntgenstrukturanalyse geeigneten Einkristallen ergaben eindeutig das Vorliegen von **31** im Festkörper. Löst man festes **31** in CDCl₃, so zeigt das NMR-Spektrum zwei Signale im Verhältniss von 2.6 zu 1 (Tetrazol : Azid).

Abbildung D2 ³¹P-NMR-Spektrum von **31** in [D6]DMSO.

Diese zwei Signale lassen sich dem Gleichgewicht zwischen dem Tetrazolisomer **31** und dem Azidisomer **27** zuordnen. Bei einer Erhöhung der Temperatur von 25°C auf 60°C verschiebt sich das Verhältnis der zwei Signale bei $\delta = 24.7$ und $\delta = 21.6$ auf 1.4 :1. Kühlt man die Probe anschließend wieder auf 25°C, so stellt sich wieder das ursprüngliche Verhältnis ein. Diese Abhängigkeit des Gleichgewichts von der Temperatur wurde in der Literatur schon eingehend diskutiert.^[65,67,71] Die weitere Temperaturabsenkung auf –50°C führt zu einer Intensitätsabnahme des Azids und schließlich zur Fällung des weniger gut löslichen Tetrazols (**31**). Die Spaltung des Tetrazolrings ist im allgemeinen ein endothermer Prozess, der den Anstieg der Azidkonzentration bei höheren Temperaturen erklärt.^[67,72]

Neben der Temperaturabhängigkeit ist das Gleichgewicht auch stark von der Polarität des Lösemittels abhängig. Polare Lösemittel begünstigen die Tetrazolform, nicht polare Lösemittel die Azidform. Die Zuordnung der ³¹P-, ¹⁵N-, und ¹³C-NMR-Signale wurde durch Messungen in [D6]DMSO und dem Vergleich mit umfangreichen, jedoch z. T. widersprüchlichen, Literaturangaben^[73] möglich, da in DMSO das Tetrazol in sehr großem Überschuss vorliegt (Abbildung D2). Das Intensitätsverhältnis liegt bei 56 zu 1 und ist mit weiteren NMR-Daten in Tabelle D1 und D2 aufgeschlüsselt.

Die ³¹P-Resonanz wird beim Ringschluß bei tieferem Feld beobachtet (Tabelle D1). Es konnten im NMR-Spektrum keine der möglichen Gleichgewichte zwischen **31**, **33** und **34** beobachtet werden.

Diese Resultate stehen im Einklang mit den Ergebnissen der theoretischen Rechnungen (**31** a **33** $\Delta E[B3LYP/6-31G(d)//PM3] = 6.5$ kcal mol⁻¹; **31** a **34** $\Delta E[B3LYP/6-31G(d)//PM3] = 19.8$ kcal mol⁻¹).

Verbindung	$\delta^{[a]}$	rel. Intensität
PPh ₃	-4.6	_
31 ^[b]	24.7	2.6
27 ^[b]	21.6	1
31 ^[c]	24.9	56
27 ^[c]	21.1	1
32	21.1	5
32	16.7	5
28	15.7(br)	1
29	12.3	-

Tabelle D1	³¹ P-NMR-Verschiebungen	in CDCla

^[a] 25°C.

^[b] Temperaturabhängiges ³¹P-NMR-Experiment: 60°C 1.4:1; 50°C 1.6:1; 40° 1.8:1; 30° 2:1; 20° 2.6:1; 10° 2.9:1; 0°C 2.9:1 und -10° 3:1 (bei tieferen Temperaturen bildet sich ein Niederschlag).
^[c] Temperaturabhängiges ³¹P-NMR-Experiment: 30°C 50:1; 50°C 36:1; 80°C 12:1; 120°C 6:1; 150°C 5:1 in [D6]DMSO.

Gibt man zwei Äquivalente Triphenylphosphan zu **26**, so sollte sich nach dem Reaktionsschema und der berechneten exothermen Reaktion **28** oder **32** bilden ($\Delta E[B3LYP/6-31G(d)//PM3] = -66 \text{ kcal mol}^{-1}$). Aus den drei Signalen im ³¹P-NMR-Spektrum ($\delta = 21.1$, 16.7 und 15.7, Intensitätsverhältnis 5:5:1 (Tetrazol/Tetrazol/Azid, Tabelle D1) lässt sich auf die Bildung eines Azid-Tetrazol-Gleichgewichts zwischen **28** und **32** schließen. In guter Übereinstimmung mit den experimentellen Befunden ergaben die theoretischen Berechnungen ein bei 0.1 kcal mol⁻¹ (Tabelle D3; *cf.* $\Delta_{exp}G_{298} = -0.95$ kcal mol⁻¹; $K_{exp}(298$ K, CDCl₃) = 5) liegendes Gleichgewicht zwischen Azid und Tetrazol. Im Festkörper konnte wie beim Gleichgewicht **27** a **31** nur das Tetrazolisomer **32** und nicht das Azid **28** isoliert werden.^[60b]

In Lösung wurde keine weitere Reaktion bei Zugabe von Triphenylphosphan beobachtet. Das dreifachsubstituierte Produkt **29** kann nur aus einer Schmelze von **32** mit überschüssigem Triphenylphosphan erhalten werden.

	¹³ C / ¹⁵ N ^[b]		¹³ C / ¹⁵ N ^[b]
N1	-266.3 (d, ${}^{1}J_{\rm NP} = 32.5$ Hz)	N9/N10	-142.5 -144.2
N2	-181.2 (d, ${}^{3}J_{\rm NP} = 6.5$ Hz)	C19	151.6 (d, ${}^{2}J_{CP}$ = 1.6 Hz)
N3	-192.4	C20	162.9 (d, ${}^{4}J_{CP}$ = 1.5 Hz)
N4	-79.1	C21	158.5 (d, ${}^{4}J_{CP}$ = 1.5 Hz)
N5	17.0	$1C_{\text{phenyl}}$	124.5 (d, ${}^{1}J_{CP}$ = 102.6 Hz)
N6	-35.1	$2C_{\text{phenyl}}$	129.3 (d, ${}^{2}J_{CP}$ = 13.0 Hz)
N7	-151.1 (d, ${}^{3}J_{\rm NP} = 11.2$ Hz)	$3C_{\text{phenyl}}$	132.9 (d, ${}^{3}J_{CP}$ = 10.8 Hz)
N8	-265.4	$4C_{phenyl}$	133.7 (d, ${}^{4}J_{CP}$ = 3.0 Hz)

¹³C- und ¹⁵N-NMR-Resonanzen^[a] von **31** (δ in ppm, [D6]DMSO). **Tabelle D2**

^[a] Nummerierung der Atome siehe Abbildung D6. ^[b] Zuordnung anhand von Literaturdaten.^[73a]

Das ³¹P-NMR-Spektrum zeigt, wie erwartet, nur eine Resonanz bei $\delta = 12.3$. 2,4,6-Tris(triphenylphosphanimino)-1,3,5-triazin (29) kann als Trimer von $(C_6H_5)_3$ PNCN ($\delta = 23.1$)^[74] angesehen werden. Die geringen Verschiebungsunterschiede der gemessenen Verbindungen zeigen, dass die alleinige Aufnahme von ³¹P-NMR-Spektren nur wenig geeignet ist, um anhand der Verschiebungen auf die Struktur der hier diskutierten Verbindungen zu schließen. Eine genaue Zuordnung ist in Kombination mit ¹³C- und ¹⁵N-NMR-Messungen möglich. Die nur quantenmechanischen Rechnungen ergaben auch beim dritten Reaktionsschritt eine exotherme Reaktion ($\Delta E[B3LYP/6-31G(d)//PM3] = -53$ kcal mol⁻¹). Aufgrund der sehr drastischen Reaktionsbedingungen kann bei der Bildung von 29 auf eine sehr große Reaktionsbarriere geschlossen werden. Die Bildung von 29 im Festkörper konnte, neben der Charakterisierung durch NMR-, Raman- und IR-Spektroskopie und Massenspektrometrie (Molekülpeak), auch durch eine Kristallstrukturbestimmung an Einkristallen bestätigt werden (Abbildung D6).

D2.3 Konformationsanalyse

Die Strukturen von 26-34 wurden mit semiempirische Rechnungen auf PM3-Niveau bestimmt und anschließend eine single point Rechnung unter Anwendung der Dichtefunktionaltheorie (B3LYP / 6-31G (d, p) durchgeführt, um die thermodynamischen Daten und die Stabilität aller in Abbildung D1 angegebenen Verbindungen abzuschätzen. Die Verbindungen 26, 29, 31 und 32 konnten isoliert und charakterisiert werden. Da sich alle Moleküle von 26 ableiten, müssen verschiedene Konformere und Isomere berücksichtigt werden. Für 26 ergeben sich acht mögliche Konformere, von denen jedoch aufgrund der Symmetrie nur zwei nicht äquivalente Komformationen übrig bleiben. Bei den Rechnungen wurden alle terminalen N-Atome der Azidgruppe, die in cis-Position zum C-Atom des Rings standen, in die *trans*-Position optimiert. Diese Ergebnisse spiegeln sich auch in den experimentellen Daten wider. Es bleiben also nur zwei zu berücksichtigende Konformere für 26. Dieser *cis-trans*-Wechsel ergab sich für alle hier berechneten Verbindungen. Um die Übersichtlichkeit zu gewährleisten und eine systematische Ordnung der vielen Isomere zu erlauben, wird ein Modell entsprechend Abbildung D3 eingeführt. Die Ergebnisse der Konformationsanalyse sind in Tabelle D3 zusammengefasst.

Abbildung D3 Modell für die Zuordnung der verschiedenen Atome in der von 26 abgeleiteten Verbindungen. Diese Anordnung entspricht ttt (Y1 trans zu N1, Y2 trans zu N2, Y3 trans zu N3; Z1, Z2 und Z3 wurden immer in trans-position zu C1, C2 und C3 gefunden).

Tabelle D3Relative (kcal mol^-1) und absolute Energien (a.u.) (B3LYP/6-
31G(d)//PM3).

		Äquivalent zu	Etot(B3LYP/6-		Eral	
		r rqui (urent 2u	31G(d.p)//PM3)		Liei	
26						
а	ttt	ссс	-771.137924		0.00	
b	ttc	ctc, tct, cct, ctt, tcc	-771.137114		0.51	
27 ^[a]						
а	ttt	ccc	-1698.010963		0.00	
b	ttc	cct	-1698.007812		1.98	
c	ctc	ctt	-1698.009973		0.62	
d	tcc	tct	-1698.008109		1.79	
Reakti	on	$\mathbf{26a} + \mathrm{PPh}_3 \rightarrow \mathbf{27a} + \mathrm{N}_2$		$\Delta E =$	-71.8	
28 ^[b]						
а	ttt	ссс	-2624.874643		0.00	
b	tcc	ctt	-2624.871368		2.06	
с	ttc	ctc	-2624.870263		2.75	
d	tct	cct	-2624.849263		15.91	
Reakti	on	$\mathbf{27a} + \mathrm{PPh}_3 \rightarrow \mathbf{28a} + \mathrm{N}_2$		$\Delta E =$	-65.9	
29						
а	ttt	ccc	-3551.717605		0.00	
b	ttc	ctc, tct, cct, ctt, tcc	-3551.697495		12.61	
Reakti	on	$\mathbf{28a} + \mathrm{PPh}_3 \rightarrow \mathbf{29a} + \mathrm{N}_2$		$\Delta E =$	-52.9	
30 ^[a]						27a
а	ttt		-1697.997036		0.00	8.74
b	ttc		-1697.989618		4.76	13.39
с	ctc		-1697.989452		4.65	13.50
d	ctt		-1697.993354		2.31	11.05
31 ^[a]						27a
a	ccc		-1698.008867		0.00	1.31
b	tcc		-1698.006438		1.52	2.84
с	tct		-1697.998893		6.26	7.57
	cct		-1697.998575		6.46	7.77
32 ¹⁰			2(24.074517		0.00	28a
a	ttt	ccc	-2624.8/451/		0.00	0.08
b	tee	tic	-2624.841054		10.57	10.45
C 22[d.e]	ctc	ici	-2024.803988		12.88	12.90
33.22			1(07.009572			2/a 7 79
2 4 [d]	itt	ccc	-109/.9985/2			/./ð 27.
34	14 0	ata	1607 077252			2/a 21.15
	uc	CIC	-109/.9//200			21.13

^[a] Azidgruppe gebunden an C1, NPPh₃ gebunden an C3.

^[b] Azidgruppe gebunden an C1.

^[c] NPPh₃ gebunden an C1 und C3; ttc (ctc) repräsentiert kein stabiles Isomer und wird zu ttt optimiert.

^[d] NPPh₃ gebunden an C1.

^[e] Konformer ctt (Äquivalent zu tcc) besitzt kein Minimum.

D2.4 Tetrazol vs. Azid

Die Azidsubstituenten in den Verbindungen 27, 28, 30 und 31 sind in der Lage, ein benachbartes N-Atom des Triazinrings unter Ausbildung eines Tetrazolringsystems

anzugreifen (Abbildung D1). Wie auch Berechnungen der Mulliken-Partialladungen (Tabelle D4) ergaben, sollte elektrostatisch gesehen keine Ringschlußreaktion eintreten. Das terminale N-Atom der Azidgruppe und die N-Atome im Triazinring tragen relativ große negative Ladungen und sollten sich dementsprechend abstoßen. Dass es trotzdem zu einer Isomerisierung zum Tetrazolring kommt, kann nur durch eine π -Stabilisierung des Triazin-Tetrazol-Ringsystems erklärt werden. Aus diesem Grunde sind solche 1,5-dipolaren Cyclisierungen nicht elektrostatisch gesteuert, sondern orbitalkontrolliert (Abbildung D4).

Abbildung D4 Darstellung des HOMOs für das Wasserstoffderivat von 28.

Die Rechnungen zeigen, dass bei der Einführung einer Triphenylphosphangruppe die Bindung zwischen C und N stärker polarisiert wird, also der Kohlenstoff eine größere positive Ladung bekommt und der Stickstoff eine größere negative Ladung trägt. Ebenso wird mehr Elektronendichte auf das terminale N-Atom der Azidgruppe transferiert. Ein elektrostatischer Angriff wird durch diese stärkere Polarisierung noch unwahrscheinlicher. Die Einführung des zweiten Triphenylphosphanmoleküls erhöht diesen Polarisationseffekt und die damit verbundene Abstoßung noch weiter (N_{term,azid} *vs.* N_{ring}; **26**: -0.27e *vs.* -0.29e; **27**: -0.33e *vs.* -0.34e; **28**: -0.36e *vs.* -0.38e; Tabelle D4).

	C1	N1	C2	N2	C3	N3	N4	N5	N6	Y1	Y2	Y3	Z1	Z2	Z3
(1)ttt	+0.22	-0.29	+0.22	-0.29	+0.22	-0.29	-0.42	-0.42	-0.42	+0.75	+0.75	+0.75	-0.27	-0.27	-0.27
(2)ttt	+0.23	-0.34	+0.23	-0.36	+0.28	-0.35	-0.43	-0.44	-0.74	+0.77	+0.77	+2.23	-0.33	-0.32	-0.58
(3)ttt	+0.23	-0.40	+0.28	-0.42	+0.29	-0.38	-0.45	-0.76	-0.75	+0.78	+2.19	+2.20	-0.36	-0.58	-0.58
(4)ttt	+0.30	-0.45	+0.29	-0.44	+0.28	-0.44	-0.78	-0.76	-0.77	+2.17	+2.17	+2.18	-0.59	-0.59	-0.59
(5)ttt	+0.17	+0.10	+0.02	+0.12	+0.27	-0.29	-0.42	-0.23	-0.73	+0.76	+0.06	+2.25	-0.28	-0.17	-0.59
(6)ccc	+0.23	-0.28	-0.02	+0.10	+0.25	-0.37	-0.44	-0.18	-0.75	+0.76	+0.03	+2.30	-0.30	-0.16	-0.61
(7)ttt	+0.25	+0.09	+0.02	-0.39	+0.28	-0.40	-0.77	-0.25	-0.75	+2.26	+0.03	+2.21	-0.59	-0.19	-0.60
(8)ttt	+0.24	+0.14	-0.13	+0.17	-0.01	-0.32	-0.75	-0.11	-0.19	+2.32	+0.01	+0.04	-0.61	-0.11	-0.14
(9)ttc	+0.26	+0.05	-0.01	-0.10	+0.03	+0.00	-0.76	-0.18	-0.22	+2.42	+0.05	+0.11	-0.64	-0.18	-0.35

Tabelle D4Mulliken-Partialladungen (in e)[a] von 26.

^[a] Siehe Abbildung D3.

Obwohl anzunehmen ist, dass die abstoßenden Kräfte stärker werden, ist die Ringschlußreaktion im Vergleich zu Verbindung **26**, bei der nur die Azidform existiert, in den Staudingerprodukten leichter. Durch die Einführung der Triphenylphosphangruppe wird Elektronendichte in das Ringsystem transferiert. Die Menge an umverteilter Elektronendichte steigt von **27** über **28** zu **29** mit der Anzahl der eingeführten Triphenylphosphangruppen an (**27**: 0.25e; **28**: 0.34e; **29**: 0.40e).

Durch die Ringbildung ändert sich die Ladungsverteilung im Triazin-Ringsystem extrem. Das terminale N-Atom der Azidgruppe wird im Tetrazolring positiver, wohingegen das C-Atom im Tetrazolring eine beachtliche Menge an Elektronendichte bekommt und somit weniger positiv wird (Partialladung von C2 siehe Tabelle D4). Dies bedeutet, dass Elektronendichte vom Triazinring in die *Azidgruppe* des Tetrazolrings verschoben wird ((**30**): 0.40e; (**31**): 0.32e; (**32**): 0.41e; (**33**) 0.21e). Diese Ladungsumverteilung scheint der Grund dafür zu sein, dass die Einführung der Triphenylphosphangruppen so wichtig für die Ringbildung ist und die verbleibenden C-N-Bindungen stärker polarisiert werden.

Um mehr über den Einfluss der Triphenylphosphangruppen zu erfahren und einen Einblick in die Kinetik und die Thermodynamik der Gleichgewichte **27** a **31** und **28** a **32** zu bekommen, wurden für **26** Rechnungen auf B3LYP/6-31G(d) Niveau volloptimiert durchgeführt. Die berechneten Strukturen der unterschiedlichen Isomere von **26** und mögliche Cyclisierungsprodukte sind in Abbildung D4 aufgeführt. Für **26** wurden zwei verschiedene Strukturen **TR1** und **TR2** gefunden. Alle Strukturen sind planar und repräsentieren ein Minimum auf der Potentialenergiefläche. Da die Azidgruppen in der Ringebene liegen, wird eine bessere Delokalisation der π -Elektronendichte über das ganze Molekülgerüst erreicht.^[75] Die am stärksten ins Gewicht fallenden Struktur-Veränderungen bei der Cyclisierung sind das Abwinkeln der Azidgruppe um ca. 58° und die Zunahme der N-N-Bindungslängen der terminalen Azidstickstoffatome um ca. 0.16 Å. Interessanterweise zeigt sich, dass alle abgeleiteten Strukturen von **26a** (**TR1a** und **TR2a**) stabiler sind als solche von **26b** (**TR1b** und **TR2b**; Tabelle D5).

Eine mögliche Cyclisierung für 26 wurde bisher nicht experimentell untersucht.^[76] Bei der Cyclisierung von 26 würden die Strukturen TR1a oder TR1b gebildet werden (Tabelle D5, Abbildung D5). Die Rechnungen zeigen, dass die möglichen Cyclisierungsreaktionen (26a a TR1a; TR1a a TR2a und TR2a a TR3) von 26, im Gegensatz zu den Gleichgewichten 27 a 31 und 28 a 32, mit einer Aufnahme von 8 bis 11 kcal mol⁻¹ endotherm sind und Gleichgewichtskonstanten von ca. 10^{-8} bis 10^{-11} besitzt (Tabelle D5). Durch die Integration geeigneter NMR-Signale konnten für die Gleichgewichte 27 a 31 und 28 a 32 die Gleichgewichtskonstanten und die freien molaren Enthalpien abgeschätzt werden. Die experimentellen Gleichgewichtskonstanten von 2.6 für 27 a 31 und 5.0 für das Gleichgewicht 28 a 32 stehen in gutem Einklang mit den berechneten Werten von 0.1 und 0.9 (B3LYP/6-31G(d)//PM3, Tabelle D5).^[69,70]

Die Gleichgewichtskonstante für 27 a 31 weicht mit einem Wert von 1.5 weniger von den experimentellen Werten ab (B3LYP/6-31G(d) (volle Optimierung)). Es ist leider aus Rechenzeitgründen nicht möglich, dieses hohe Niveau auch zur Berechnung der Moleküle 28, 29 und 32 anzuwenden. Die großen Unterschiede zwischen den Gleichgewichtskonstanten der Gleichgewichte 26a a TR1a und 27 a 31 (28 a 32) zeigen sehr schön den Einfluß der Triphenylphosphangruppen als tetrazolstabilisierende Gruppen. Elektronendonatoren wie Triphenylphosphan begünstigen den Ringschluß und stabilisieren gleichzeitig die Tetrazolform.^[77]

Als nächstes wurde die Aktivierungsbarriere der Cyclisierung untersucht.^[78] Es gibt mehrere Faktoren, die die Höhe der Aktivierungsbarriere bei einer 1,5-diploaren Cyclisierung bestimmen:

- (i) die ungünstige Ladungsverteilung (Elektrostatische Abstoßung, Tabelle D4) mit einer negativen Ladung am γ-Stickstoff (terminal) der Azidgruppe und am N-Atom des Rings,
- (ii) die Winkelung der Azideinheit von 171° auf 113° (Abbildung D5) und
- (iii) eine Ladungsumverteilung beim Ringschluß

Dies steht im Einklang mit den berechneten Aktivierungsbarrieren der Cyclisierung zum Endprodukt **TR3**. Für den ersten Ringschluß muss eine Barriere von 23 (**TR1a**), für den zweiten Ringschluß 21 (**TR2a**) und für den letzten Ringschluß (**TR3**) eine Aktivierungsbarriere von 18 kcal mol⁻¹ überwunden werden. Durch die Einführung einer PPh₃-Gruppe wird die Barriere leicht auf 20 kcal mol⁻¹ abgesenkt (**27a** a **31a** Isomerisierung). Da keine experimentellen Daten zur Verfügung standen, kann nur der Vergleich mit ähnlichen Reaktionen herangezogen werden. Diese stimmen sehr gut mit den hier berechneten Daten überein. Für die Ringöffnung von 1-(*p*-

Chlorophenyl)pentazole (CD₃OD/CD₂Cl₂, -10 bis 0°C) wurde eine Aktivierungsbarriere von 19.2 kcal mol⁻¹ bestimmt.^[79] Auch neuere *ab-initio*-Berechnungen (Azid-Tetrazol-Isomerisierung von Thiazol[3,2–d]tetrazol) passen sehr gut zu den hier berechneten Ergebnissen. Es wurden Übergangszustände mit einer Aktivierungsenergie von ca. 19 kcal mol⁻¹ gefunden. Die Tetrazolstruktur ist 1.2 kcal mol⁻¹ instabiler als die Azidform.^[68] Bei Cyclisierungreaktionen kann der Einfluß polarer Lösemittel sehr groß sein. Für das System Thiazol–[3,2–*d*]–tetrazol änderte sich die freie molare Energie durch Solvatation jedoch nur geringfügig (ca. 1 kcal mol⁻¹ in Wasser).^[68] In Abbildung D5 sind die verschiedenen Strukturen der Zwischenstufen der Cyclisierung von **26** dargestellt. Dabei zeigt sich, dass die größten Strukturänderungen bei den Azidgruppen stattfinden, die Bindungslängen von 1.931 und 1.945 Å und Winkel von 129.8 bis 130.7° aufweisen.

Die für den Übergangszustand optimierten Strukturen sind – wie erwartet – Zwischenstufen der Azid-Tetrazol-Cyclisierung. Zwei verschiedene Übergangszustände wurden für die Cyclisierung von **TR1a** zu **TR2a** gefunden (**TS**_a und **TS**_b, Abbildung D5).

Da in **TR1a** zwei nicht äquivalente Azidgruppen die Möglichkeit zum Ringschluß haben, gibt es zwei Reaktionswege, wobei TS_a um 1.6 kcal mol⁻¹ über TS_b liegt.

		E ^{tot}	ΔΕ	ΔH_{298}	ΔG_{298}	K	
26a		-771.159322	0.00	0.00	0.00		
26b		-771.158509	0.51	0.49	0.46		
TR1a		-771.142372	10.64	10.74	12.30	26a→TR1a:	6.10-10
TR1b		-771.140411	11.87	11.92	13.45	26b→TR1b:	$2^{\cdot}10^{-10}$
TR2a		-771.1290145	18.51	18.80	21.92	TR1a→TR2a:	6.10-8
TR2b		-771.123252	22.63	22.73	25.69	TR1b→TR2b:	7.10^{-10}
TR3		-771.112673	29.27	29.61	34.15	TR2a→TR3:	7.10^{-10}
TS	26a→TR1a	-771.121032	24.03	22.82	24.21		
TS _a	TR1a→TR2a ^[b]	-771.105029	34.07	33.01	35.93		
TS _b	TR1a→TR2a ^[b]	-771.107560	32.48	31.41	34.40		
TS	TR2a→TR3	-771.091874	41.81	40.89	45.42		
27a ^[c]		-1697.982960	0.00				
31 a ^[c]		-1697.983364	-0.25		-0.57 ^[d]	27a→31a:	1.5 ^[e]
31b ^[c]		-1697.981348	1.01			27a→31b:	0.2 ^[e]
TR2a-	31a ^[c]	-1697.949500	19.98				

Tabelle D5Absolute (a.u.) und relative (kcal mol⁻¹) Energien von 26, 27a, 31aund 31b voll optimiert auf B3LYP/6-31G(d).^[a]

^[a] Siehe Abbildung D5.

^[b] Es sind zwei Wege zur Bildung von **TR2a** und dementsprechend zwei verschiedene

Übergangszustände möglich, siehe Abbildung D5.

^[c] Siehe Tabelle D2, Abbildung D1.

^[d] Experimentalwert (erhalten aus den hier gemessenen ³¹P-NMR-Daten).

^[e] *cf.* $K_{exp.} = 2.7$, siehe Literatur [70].

Abbildung D5 Auf B3LYP/6-31G(d) voll optimierte Strukturen der verschiedenen Isomere von 26 und die Übergangszustände für die Cyclisierung (Abstände in [Å], Winkel in [°]).

D2.5 Struktur von 2,4,6–Tris(triphenylphosphanimino)–1,3,5–triazin (29), 2–Triphenylphosphanimino–4–azidotetrazolo[5,1-a]–[1,3,5]triazin (31) und 2,4–Bis(triphenylphosphanimino)tetrazolo[5,1-a]–[1,3,5] triazin (32)

Zur Röntgenstrukturanalyse geeignete Einkristalle von **29** wurden durch Umkristallisation aus Xylen, Einkristalle von **31** aus Dichlorethan und **32** aus Chloroform bei Raumtemperatur erhalten. **29** kristallisiert in der triklinen Raumgruppe $P\bar{1}$ mit vier Molekülen in der Elementarzelle. Abbildung D6 zeigt die zwei unabhängigen Moleküle als ORTEP-Bild bei 293 K. Die zwei Moleküle zeigen die mögliche *cis*- bzw. *trans*-Konfiguration und können durch eine 180°-Drehung um die N2-C5-Achse in einander überführt werden.

Abbildung D6Molekülstruktur von 29, Ellipsoide der thermischen
Schwingung mit 25% Aufenthaltswahrscheinlichkeit bei 293
K (ohne H-Atome).

Die zwei Ringsysteme sind um ca. 9° gegeneinander gekippt. Dies ist auf die sehr sperrigen Triphenylphosphanringe zurückzuführen. Zum Vergleich: das Triazidotriazin liegt im Festkörper in völlig planaren Schichten vor. Die P-N-Bindungslängen von ca. 1.59 Å liegen zwischen einer Doppel- und einer Einfachbindungsordnung und zeigen den π -Charakter der P-N-Bindung. Die P-N-C-Winkel liegen zwischen 116° und 125° und sind vergleichbar mit dem Winkel des monomeren Ph₃PNCN von 122° (Tabelle D6).^[80]

P(1)–N(4)	1.588(3)	P(1A)-N(4A)	1.585(3)
N(4)–C(1)	1.360(4)	N(4A)–C(1A)	1.367(4)
C(1)–N(2)	1.347(4)	C(1A)–N(2A)	1.349(4)
N(2)–C(2)	1.347(4)	N(2A)-C(2A)	1.348(4)
P(1)–N(4)–C(1)	120.8(2)	P(1A)-N(4A)-C(1A)	121.5(3)
P(2)-N(5)-C(2)	124.8(3)	P(2A)-N(5A)-C(2A)	119.4(3)
P(3)–N(6)–C(3)	115.8(2)	P(3A)-N(6A)-C(3A)	122.7(2)
N(4)-C(1)-N(2)	120.6(3)	N(4A)-C(1A)-N(2A)	120.0(3)
C(1)–N(2)–C(2)	115.4(3)	C(1A)-N(2A)-C(2A)	115.3(3)

Tabelle D6Ausgewählte Bindungslängen [Å] und -winkel [°] für 29.

31 kristallisiert in der monoklinen Raumgruppe *C*2/c mit acht Molekülen 2–Triphenylphosphanimino–4–azidotetrazolo[5,1-*a*]–[1,3,5]triazin und vier Molekülen Dichlorethan in der Elementarzelle. Die Molekülstruktur von **31** ist aus Abbildung D7 ersichtlich. Entsprechend des Modells aus Abbildung D3, kristallisiert **31** als *trans-cis-cis*-Konformer. Dieses entspricht nicht dem energieärmsten Isomer. Entsprechend der quantenmechanischen Rechnungen sollte die *cis-cis-cis*-Anordnung die stabilste sein. Die *trans-cis-cis*-Konformation ist jedoch nur ca 1.5 kcal mol⁻¹ (B3LYP/6-31G(d)//PM3, Gasphase) instabiler. Deshalb sollten Gittereffekte für die im Festkörper gefundene *trans-cis-cis*-Konformation von **31** verantwortlich sein.^[69,70]

Abbildung D7 ORTEP-Darstellung der Molekülstruktur von 31. Ellipsoide der thermischen Schwingung mit 25% Aufenthaltswahrscheinlichkeit bei 293 K (ohne H-Atome).

Die P-N-Abstände in **31** sind mit 1.611 Å and 1.625 Å signifikant länger im Vergleich zu denen von **29**. Diese Werte liegen jedoch ebenfalls zwischen einer Bindungsordnung von eins und zwei. Zum Vergleich, die Summe der Kovalenzradien (PN) beträgt 1.8 Å für eine Einfachbindung und 1.6 Å für eine Doppelbindung.^[81] Eine typische P-N-Bindung mit π -Charakter wird in Verbindungen des Typs R₃–P=N–R mit einer Länge von 1.602 Å angegeben.^[82] Die Bindungslängen und -winkel des Tetrazolringes stimmen ebenfalls mit den Daten aus der Literatur überein.^[83]

P(1)–N(1)	1.611(4)	P(1a)–N(1a)	1.624(4)
N(1)-C(19)	1.308(6)	N(1a)-C(19a)	1.310(6)
N(10)–N(9)	1.098(9)	N(10a)–N(9a)	1.099(6)
N(9)–N(8)	1.224(9)	N(9a)–N(8a)	1.230(7)
N(8)-C(20)	1.374(9)	N(8a)–C(20a)	1.397(7)
C(20)–N(3)	1.306(8)	C(20a)–N(3a)	1.309(7)
N(3)-C(21)	1.332(9)	N(3a)–C(21a)	1.334(7)
C(21)–N(4)	1.309(9)	C(21a)–N(4a)	1.314(7)
N(4)–N(5)	1.361(9)	N(4a)–N(5a)	1.364(7)
N(5)–N(6)	1.313(7)	N(5a)–N(6a)	1.318(6)
N(6)–N(7)	1.362(7)	N(6a)–N(7a)	1.359(6)
N(10)-N(9)-N(8)	170.6(7)	N(10a)–N(9a)–N(8a)	170.3(5)
N(4)-N(5)-N(6)	112.3(6)	N(4a)–N(5a)–N(6a)	113.0(5)
P(1)-N(1)-C(19)	125.6(4)	P(1a)-N(1a)-C(19a)	121.1(3)

Tabelle D7Ausgewählte Bindungslängen [Å] und -winkel [°] für 31.

Die kristallographischen Daten für **32** sind im Experimentalteil und im Anhang zusammengefasst. **32** kristallisiert aus Chloroform in der monoklinen Raumgruppe $P2_1/n$ mit vier Molekülen und zwei Lösungsmittelmolekülen pro Tetrazol in der Elementarzelle. Abbildung D8 zeigt die Molekülstruktur des Tetrazols **32**.

Abbildung D8 Molekülstruktur von 32. Ellipsoide der thermischen Schwingung mit 25% Aufenthaltswahrscheinlichkeit bei 173 K (ohne H-Atome).

Die P-N-Bindungslängen in **32** betragen 1.614 Å und 1.608 Å. Dies passt zu einer Bindungsordnung zwischen eins und zwei. Zum Vergleich, die Summe der Kovalenzradien (P-N) beträgt 1.8 Å und eine typische P-N-Bindungslänge für Verbindungen des Typs R_3 –P=N–R ist 1.602 Å.^[15] Die Bindungslängen und –winkel des Tetrazolrings (N5-N6: 1.292 Å, N6-N7: 1.364 Å, N5-N6-N7: 112.7°) passen ebenfalls sehr gut zu den in der Literatur gefundenen Werten.^[16] Die Bindungslängen der C1-N1- und C2-N2-Bindungen in **32** sind 1.323 Å und 1.349 Å lang und liegen ebenfalls zwischen einer Bindungsordnung von 1 und 2. Die Summe der Kovalenzradien (C-N) ist 1.47 Å für eine Einfachbindung und 1.27 Å für eine Doppelbindung.^[14] Ausgewählte Bindungslängen [Å] und -winkel [°] für **32** sind in Tabelle D8 zusammengefasst.

P(1)-N(1)	1.614(2)	P(2)–N(2)	1.608(2)
N(1)–C(1)	1.323(3)	N(2)–C(2)	1.349(3)
N(3)–C(1)	1.323(3)	N(3)–C(2)	1.374(3)
N(4)–C(3)	1.359(3)	N(4)–N(5)	1.371(3)
N(4)–C(1)	1.397(3)	N(5)–N(6)	1.292(3)
N(6)–N(7)	1.364(3)	N(7)–C(3)	1.337(3)
N(8)–C(3)	1.334(3)	N(8)–C(2)	1.354(3)
C(1)-N(1)-P(1)	121.5(2)	C(2)-N(2)-P(2)	118.5(2)
C(1)-N(3)-C(2)	119.5(2)	C(3)-N(4)-N(5)	109.3(2)
C(3)–N(4)–C(1)	121.2(2)	N(5)–N(4)–C(1)	129.3(2)
N(6)-N(5)-N(4)	104.9(2)	N(5)–N(6)–N(7)	112.7(2)
C(3)–N(7)–N(6)	105.7(2)	C(3)–N(8)–C(2)	114.0(2)
N(1)-C(1)-N(3)	127.5(2)	N(1)-C(1)-N(4)	115.9(2)
N(3)-C(1)-N(4)	116.5(2)	N(2)-C(2)-N(8)	119.6(2)
N(2)-C(2)-N(3)	115.0(2)	N(8)-C(2)-N(3)	125.4(2)
N(8)-C(3)-N(7)	129.7(2)	N(8)-C(3)-N(4)	122.9(2)
N(7)-C(3)-N(4)	107.4(2)		

Tabelle D8Ausgewählte Bindungslängen [Å] und –winkel [°] von 32.

Die Differenzen in den Bindungslängen des Triazinringes (C1-N4 = 1.397 Å, C1-N3 = 1.323 Å) können mit unterschiedlichen Donor-Acceptor-Wechselwirkungen der freien p-Orbital-Elektronenpaare (p-LP) von N1 oder N2 mit den unbesetzten antibindenden σ^* -Orbitalen der C1-N4- und C2-N3-Bindungen erklärt werden. Vom sterischen Blickpunkt aus gesehen ist mehr Elektronendichte im antibindenden σ^* -Orbital der C1-N4-Bindung. Aus diesem Grunde ist diese Bindung schwächer als die C1-N3-Bindung. Diese Hyperkonjugation destabilisiert die C-N-Bindung und erklärt den π -Charakter der N1-C1-Bindung.

D2.6 Zusammenfassung

Alle drei Stufen der Reaktion von 2,4,6–Triazido–1,3,5–triazin (26) mit Triphenylphosphan repräsentieren exotherme Reaktionen. Nur für die Verbindungen 27 und 28 kann in Lösung ein Gleichgewicht zwischen dem Tetrazol- und dem Azidisomer gefunden werden. Die Energiedifferenz zwischen diesen zwei Isomeren ist sehr klein und sollte im Bereich von ± 1 kcal mol⁻¹ liegen. Im Festkörper konnte nur die Tetrazolverbindung beobachtet werden und durch Röntgenbeugungsversuche charakterisiert. Die experimentelle Beobachtung des Azid-Tetrazol-Gleichgewichts 27 a 31 und 28 a 32, im Gegensatz zu 26 a TR1, kann durch die thermodynamische Stabilisierung des Tetrazolisomers durch die Einführung der Triphenylphosphangruppe erklärt werden.

Die relativ große Aktivierungsbarriere der Cyclisierung von ca. 20 bis 25 kcal mol⁻¹ kann teilweise durch die ungünstige elektrostatische Abstoßung zwischen dem terminalen Stickstoff der Azidgruppe und dem Stickstoffatom im Ring und ebenso durch das Abwinkeln der Azidgruppe erklärt werden. Die Einführung von Triphenylphosphangruppen führt zu stärker polarisierten C-N-Bindungen im Ring und zu einem Transfer von Elektronendichte in das Triazinringsystem. Der orbitalkontrollierte Ringschluß wird durch einen nicht unerheblichen Ladungstransfer in den Tetrazolring begleitet und stabilisiert so thermodynamisch das Tetrazolisomer. Diese Ladungsumverteilung könnte die wichtige Rolle der Triphenylphosphangruppen bei der Ringschlußreaktion erklären, da sie als gute Elektronendonatoren gelten.
D3 Pseudohalogenidverbindungen des s-Triazins

D3.1 2,4–Dichloro–6–isocyanato–1,3,5–triazin (35) und 2–Chloro–4,6– diisocyanato–1,3,5–triazin (36)

D3.1.1 Ergebnisse und Diskussion

Aromatische Amine können durch Reaktion mit Oxalylchlorid oder Phosgen unter Abspaltung von Salzsäure und Kohlenmonoxid in die entsprechenden Isocyanate umgewandelt werden. Entscheidend für diese Reaktion ist jedoch, dass sich am Ring ein elektronenziehender Substituent befindet. Aus diesem Grund ist es nicht möglich aus Melamin (Triamino–*s*–triazin) das Triisocyanato–*s*–triazin herzustellen. Die Synthese von 2,4–Dichloro–6–isocyanato–1,3,5–triazin (**35**) und 2–Chloro–4,6– diisocyanato–1,3,5–triazin (**36**) ist jedoch möglich (Gleichung D3).^[84] Die Isocyanate **35** und **36** wurden mittels Röntgenbeugung, Raman-, IR- und ¹³C-NMR-Spektroskopie charakterisiert. Die Umsetzung von **35** und **36** mit Alkaliaziden (mit M = Na, K, Li) oder Trimethylsilylazid führte nicht zu einer weiteren Substitution der Chloratome.

Die Raman-Spektren von **35** und **36** zeigen die typische antisymmetrische Valenzschwingung der Isocyanatgruppe bei 2266 cm⁻¹ (**35**) und v = 2247 cm⁻¹ (**36**, IR: v = 2246 cm⁻¹ (s, v_{as} NCO), 1288 (m, v_s NCO) und die symmetrische Valenzschwingung bei 1289 cm⁻¹ und 1299 cm⁻¹. Zum Vergleich die Valenzschwingungen von OCN⁻: 2155 und 1282 cm⁻¹.^[23]

Die *in phase* und *out of phase* Aufspaltung, wie sie bei den Cyanuraziden^[60] auftritt, kann für die disubstituierte Verbindung nicht beobachtet werden.

	35 ^[a]	36 ^[a]
	131.4 (s, N <u>C</u> O)	131.5 (s, N <u>C</u> O)
^{13}C	165.2 (s, <u>C</u> –NCO)	166.0 (s, <u>C</u> -NCO)
	172.7 (s, <u>C</u> –Cl)	173.2 (s, <u>C</u> –Cl)
	() <u> </u>	-125 (N _{triazin})
^{14}N		-135 (N _{triazin})
		–308 (<u>N</u> CO)

Tabelle D9¹³C- und ¹⁴N-NMR-Daten für 35 und 36 in ppm.

^[a] **35** in CDCl₃, **36** in [D6]Benzol

In Tabelle D9 sind zum Vergleich die ¹³C- und ¹⁴N-NMR-Daten für **35** und **36** aufgeführt. Durch die Einführung der Isocyanatgruppen erfahren die Triazinkohlenstoffe (<u>C</u>–NCO) eine leichte Hochfeldverschiebung von ca. 7 ppm. Die Verschiebung der <u>C</u>-Cl-Kohlenstoffe ändert sich nur unwesentlich im Vergleich zum Cyanurchlorid (173 ppm). Die Hochfeldverschiebung wird durch den kleineren –I-Effekt und den stärkeren +M-Effekt der NCO-Gruppe im Vergleich zum Cl-Atom verständlich. Allgemein ergibt sich bei elektronegativeren Gruppen eine Tieffeldverschiebung der ¹³C-Resonanz.

D3.1.2 Röntgenstrukturanalyse

Zur Röntgenstrukturanalyse geeignete Einkristalle von **35** und **36** konnten durch Sublimation bei ca. 85°C im Vakuum erhalten werden. Verbindung **35** kristallisiert in der orthorombischen Raumgruppe *P*bca mit acht Molekülen in der Elementarzelle. In Abbildung D9 ist die Kristallstruktur von **35** wiedergegeben. Die Isocyanatgruppe in **35** ist, wie für kovalente Pseudohalogene üblich, mit 172.50° leicht gewinkelt.^[85] Die Abwinkelung der Pseudohalogeneinheit, die in ionischer Form immer linear ist, ist ein charakteristisches Merkmal für kovalent gebundene Pseudohalogenide.^[86]

Abbildung D9Molekülstruktur von 35. Ellipsoide der thermischen Schwingung
mit 50% Aufenthaltswahrscheinlichkeit bei 293 K.

Tabelle D10 Ausgewählte Bindungslängen [Å] und -winkel [°] von **35**.

35			
C(11)–O(9)	1.145(4)		
N(7)–C(11)	1.204(4)		
C(6)–N(7)	1.381(3)		
C(6)–N(4)	1.330(3)		
C(10)–Cl(1)	1.716(2)		
N(7)–C(11)–O(9)	172.5(4)		
C(6)–N(7)–C(11)	126.1(3)		

In Tabelle D10 sind die wichtigsten Bindungslängen und –winkel für **35** angegeben. Die Bindungslänge für die C-O-Bindung beträgt 1.145 Å und ist damit etwas kürzer als die Bindungslänge in PhNCO^[87] (1.173 Å). Der C-N-Bindungsabstand von 1.204 Å ist dementsprechend geringfügig größer (1.195 Å). Im Festkörper liegen sich durchdringende Molekülschichten vor, die in einem Winkel von 90° zueinander stehen (Abbildung D10). Dabei richten sich die Moleküle so aus,

dass jeweils die Isocyanatoliganden bzw. Chloroliganden zueinander zeigen. Der Sauerstoff-Sauerstoff-Abstand zweier benachbarter Moleküle beträgt 3.72 Å, Wechselwirkungen zwischen den Isocyanatgruppen sind jedoch angesichts eines van-der-Waals-Radius für Sauerstoff von 1.4 Å. nicht anzunehmen. Wechselwirkungen könnten jedoch zwischen dem π -System des Triazinrings und den Isocyanatgruppen in Frage kommen, da der Abstand z. T. unter 3 Å beträgt.

Abbildung D10 Ansicht der Elementarzelle von 35 in Richtung der a-Achse.

2–Chloro–4,6–diisocyanato–1,3,5–triazin (**36**) kristallisiert in der Raumgruppe $P2_1/n$ mit vier Molekülen in der Elementarzelle. Die kristallographischen Daten und Angaben zu den Strukturlösungen von **35** und **11** sind in Tabelle D11 aufgeführt.

	35	36
Formel	C ₄ Cl ₂ N ₄ O	C ₅ ClN ₅ O ₂
Molekulargewicht [g mol ⁻¹]	190.98	197.55
	a = 7.436(1)	a = 7.4370(7)
Gitterkonstanten [Å]	b = 9.602(1)	b = 9.158(2) c = 11.571(2)
	c = 20.078(5)	$\beta = 105.03(1)$
Zellvolumen [Å ³]	1433.6(4)	761.1(2)
Zahl der Formeleinheiten pro	8	4
Zelle	0	•
Dichte (ber.) [g cm ⁻³]	1.770	1.724
Kristallsystem, Raumgruppe	orthorhombisch, Pbca	monoklin, $P2_1/n$
Kristallgröße [mm]	$0.53 \times 0.43 \times 0.20$	$0.57 \times 0.47 \times 0.40$
Messgerät	CAD4 (1	Nonius 1977)
Strahlung	Mo-K $_{\alpha}$	$\lambda = 0.71073$
Messtemperatur	29	93(2) K
Messbereich	$\theta = 3.41 - 23.94$	$\theta = 2.88 - 23.97$
Indexbereich h _{min/max}	0/8	-8/8
$k_{min/max}$	0/10	-10/0
l _{min/max}	0/22	0/13
Zahl der gemessenen Reflexe	1119	1263
Zahl der unabhängigen Reflexe	1119 [R(int) = 0.000]	1197 [R(int) = 0.0262]
Zahl der beobachteten Reflexe	945	789
F(000)	752	392
Strukturaufklärung	Direkte	e Methoden
Verfeinerung	Vollmatrix gegen F^2	
Anzahl der Parameter	101	118
Verwendete		
Rechenprogramme	SHELXL-93	, SHELXS-80 ¹¹¹
Goodness-of-Fit on F^2	1.110	1.094
Cütafaltaran $D(\mathbf{I} > 2 - \mathbf{I})$	R1 = 0.0293	R1 = 0.0562
Gulerakioren $K(1 \ge 201)$	wR2 = 0.0741	wR2 = 0.1172
Restelektronendichten [e. Δ^{-3}]	$\Delta \rho_{\rm max} = 0.199;$	$\Delta \rho_{\rm max} = 0.173;$
	$\Delta \rho_{\min} = -0.201$	$\Delta \rho_{\min} = -0.256$

Tabelle D11Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von
35 und 36.

11				
C(5)–O(2)	1.16(1)			
N(5)–C(5)	1.19(1)			
C(4)–O(1)	1.16(1)			
N(4)–C(4)	1.17(1)			
C(3)–N(5)	1.39(1)			
C(2)–N(4)	1.39(1)			
C(1)-Cl(1)	1.713(7)			
N(5)-C(5)-O(2)	171.9(6)			
N(4)-C(4)-O(1)	172.4(7)			
C(3)–N(5)–C(5)	126.6(4)			

Tabelle D12 Ausgewählte Bindungs-längen [Å] und -winkel [°] von 36.

Der Winkel der Isocyanatgruppen ist mit 171.91 bzw. 172.43° nur geringfügig kleiner als im monosubstituierten Triazin (Tabelle D12). Die Bindungslängen der Isocyanatgruppen liegen mit 1.163 Å für die C-O-Bindung und 1.189 Å für die N-C-Bindung noch etwas näher an den Werten des PhNCO (s.o.). Auffällig jedoch ist, dass die Isocyanatgruppen 6 bzw. ca. 10° aus der Ringebene stehen. Dies kann seine Ursache in intermolekularen Wechselwirkungen haben. Wie bei der Struktur von **35** sind die Sauerstoffatome nur ca. 3 Å von den

benachbarten Triazinringen entfernt. Im Gegensatz zum Cyanurazid sind die Isocyanatgruppen in entgegengesetzter Richtung abgewinkelt (*cis-trans*, Abbildung D11). O1 und O2 stehen jeweils in *trans*-Position zu C2 bzw. C3.

Abbildung D11Molekülstruktur von 36. Ellipsoide der thermischen
Schwingung mit 50% Aufenthaltswahrscheinlichkeit bei 293 K.

D3.2 Reaktion von 2,4,6–Trichloro–1,3,5–triazin mit Thiocyanat

D3.2.1 Ergebnisse und Diskussion

Wie schon im vorhergehenden Kapitel erwähnt, reagiert das Thiocyanat-Ion mit dem basischeren Stickstoff unter Bildung von 2,4,6–Triisothiocyanato–1,3,5–triazin (**37**). Die Umsetzung von Cyanurchlorid mit Thiocyanat wurde sowohl in trockenen organischen Lösemitteln (CH₂Cl₂, THF, Aceton etc.) als auch in auf 0 bis 5°C kaltem Wasser durchgeführt. Nur die Umsetzung in Wasser und Aceton führte zu ausreichenden Ausbeuten von bis zu 60 %.^[89] Das mit schwankenden Mengen mit Cyanurchlorid verunreinigte **37** wurde durch milde Sublimation bei 30 bis 40 °C von diesem befreit. Die Darstellung der reinen mono- und disubstituierten Triazins gelang nicht. Die Variation der Temperatur bzw. Lösemittel und die Änderungen der Stöchiometrie führten bisher zu keinen befriedigenden Ergebnissen.

D3.2.2 NMR- und Schwingungsspektroskopie

Das ¹³C-NMR-Spektrum zeigt die erwarteten zwei Signale bei 173.6 (Triazinring) und 129.1 ppm (NCS). Aufgrund der schlechten Löslichkeit in unpolaren Lösungsmitteln und der leichten Zersetzung in sehr polaren Lösemitteln wie DMSO konnten bisher keine Stickstoff-NMR-Daten gesammelt werden. Die IR- und Raman-Spektren zeigen die typische antisymmetrische Valenzschwingung von kovalent gebundenen Isothiocyanaten bei 2177 cm⁻¹. Bisher konnten noch keine geeigneten Einkristalle zu Röntgenbeugungsversuchen gezüchtet werden.

D3.3 Zusammenfassung

Bei der Untersuchung des Reaktionsverhaltens der Pseudohalogenverbindungen MX (mit M = K, Na, Ag; X = NNN, OCN, CNO, SCN und SeCN) mit 2,4,6–Trichloro–1,3,5–triazin (Cyanurchlorid) zeigte sich, dass nur die Azide^[60a,b] und Thiocyanate geeignet sind das Cyanurchlorid im Sinne einer nucleophilen Substitution anzugreifen. Die Bildung der analogen Selenocyanate, Fulminate und Cyanate bzw. der entsprechenden Iso-Verbindungen konnte nicht beobachtet werden. Der Angriff des Thiocyanats erfolgt bei der nucleophilen Substitution über den Stickstoff und es kommt zur Bildung von Triisothiocyanatotriazine.^[89]

E Pseudohalogenchemie von P-N-Verbindungen

E1 Donor-Acceptor-Komplexe von Trimethylsilyltriphenylphosphanimin

E1.1 Einleitung – Bisheriger Kenntnisstand

Das Prinzip der harten und weichen Säuren oder Basen (HSAB-Prinzip) wurde von Pearson entwickelt.^[90] Als hauptsächliche Ursache der Stabilisierung von Addukten zwischen harten Säuren und harten Basen wird eine elektrostatische Wechselwirkung diskutiert.^[91] Im Gegensatz dazu spielt bei der Wechselwirkung zwischen weichen Basen und weichen Säuren die Elektronendelokalisation eine wichtige Rolle. Die Delokalisation von Elektronen führt zur Bildung einer neuen Bindung. Bei Addukten spricht man von closed shell Wechselwirkungen, die gerade in letzter Zeit größere Aufmerksamkeit gefunden haben.^[92] Sie umfassen alle zwischenmolekularen Wechselwirkungen wie Wasserstoffbrückenbindungen, Donor-Acceptor- (Lewis-Wechselwirkungen, Säure-Lewis-Base) und charge transfer metallophilic interactions sowie jede anziehende Wechselwirkung zwischen closed shell Atomen und Molekülen (siehe auch Kapitel D).

Schwache Donor-Acceptor-Addukte werden häufig auch als partiell gebundene Moleküle bezeichnet. Allgemein meint man damit Lewis-Säure-Base-Addukte, in denen die dative Bindung ein Intermediat zwischen einer van-der-Waals-Wechselwirkung (nichtkovalent) und einer voll ausgebildeten chemischen Bindung (kovalent) ist. Solche Addukte unterliegen vor allem beim Übergang von der Gasphase zum Festkörper bzw. Lösung großen strukturellen Änderungen, da die Strukturparameter besonders empfindlich auf kleinste Änderungen der Umgebung reagieren.^[93]

Die Lewis-Säure-Stärke von ICN in Lösung ist bereits intensiv untersucht worden.^[94,95] Laurence *et al.* schlussfolgerten auf der Grundlage von experimentell ermittelten Komplexbildungsenthalpien von ICl-, I₂- und ICN-Addukten in Lösung, dass die Reihenfolge der Säurestärke von der Weichheit bzw. Härte der Base abhängt. Sie folgerten, dass die Säurestärke gegenüber weichen Basen in der

Reihenfolge $ICl > I_2 > ICN$ abnimmt und gegenüber harten Basen in der Reihenfolge $ICl > ICN > I_2$ abnimmt.^[96]

$$Me_{3}SiNPPh_{3} + XCN \longrightarrow [Me_{3}SiNPPh_{3} XCN]$$
(E1)
38

Gemäß Gleichung E1 wurde versucht, die Addukte [Ph₃PN(SiMe₃)·XCN] mit X = Cl, Br und I zu synthetisieren. Nur für die Reaktion mit ICN gelang es, das Addukt [Ph₃PN(SiMe₃)·XCN] im Festkörper zu isolieren. Das ClCN-Addukt zersetzte sich spontan unter Bildung von Me₃SiCl und Ph₃PNCN; das BrCN-Addukt ist in Lösung wesentlich stabiler, zersetzt sich aber langsam auch. Das Erhitzen bzw. die Zugabe von KF führte in allen Fällen zu der sofortigen Bildung von Ph₃PNCN. Besonders die Reaktion von [Ph₃PN(SiMe₃)·ICN] (**39**) mit KF stellt eine neue, sehr einfach durchzuführende Synthese für die Darstellung von Ph₃PNCN dar.

E1.2 Kristallstruktur von [Ph₃PN(SiMe₃) · ICN] (39)

Das ICN-Addukt kristallisiert in der monoklinen Raumgruppe *C*2/c mit 16 Molekülen in der Elementarzelle. Die Molekülstruktur ist in Abbildung E1 gezeigt. Es gibt zwei kristallographisch verschiedene Moleküle mit ziemlich unterschiedlichen Bindungslängen und -winkeln. (Tabelle E1). Die Ansicht entlang der b-Achse der Elementarzelle ist in Abbildung E2 gezeigt. Sie verdeutlicht, dass zwei verschiedene ICN-Schichten auftreten, die einen Winkel von 106° aufspannen.

N(2)–C(1)	1.145(2)	N(4)–C(2)	1.163(3)
C(1)–I(1)	2.023(1)	I(2)–C(2)	2.040(9)
I(1)–N(1)	2.634(1)	I(2)–N(3)	2.74(1)
N(1)–Si(1)	1.73(2)	N(3)-Si(2)	1.714(1)
N(1)–P(1)	1.57(1)	N(3)–P(2)	1.560(9)
N(2)–C(1)–I(1)	176.12(1)	N(4)-C(2)-I(2)	175.92(2)
C(1)–I(1)–N(1)	179.11(1)	C(2)–I(2)–N(3)	177.03(1)
I(1)–N(1)–P(1)	110.74(1)	I(2)–N(3)–P(2)	114.44(2)
I(1)–N(1)–Si(1)	115.87(1)	I(2)–N(3)–Si(2)	109.14(1)
Si(1)–N(1)–P(1)	133.24(2)	Si(2)–N(3)–P(2)	136.38(1)

Tabelle E1Ausgewählte Bindungslängen [Å] und Winkel [°] von 39.

Abbildung E1 Molekülstruktur von 39. Ellipsoide der thermischen Schwingung mit 25% Aufenthaltswahrscheinlichkeit bei 293 K.

Die *C*₁-symmetrische Molekülstruktur von **39** beschreibt ein sehr schwaches, über das Stickstoffatom der Ph₃PNSiMe₃-Einheit gebundenes, ICN-Addukt. Der wohl interessanteste und charakteristischste Strukturparameter ist der extrem lange N-I-Abstand, welcher eine Konsequenz der starken *closed shell* Wechselwirkung zwischen dem ICN- und Me₃SiNPPh₃-Molekül ist.^[97,98] Die sehr lange N-I-Bindung

mit 2.634(1) und 2.739(14) Å ist jedoch wesentlich kürzer als die I-N-van-der-Waals-Wechselwirkungen.^[99] Zum Vergleich: die N-I-Bindungslänge in Ph₃PN-I beträgt 2.056 Å.^[100] Festes ICN besteht aus ICN-Ketten mit stark anziehenden Wechselwirkungen zwischen dem Iodatom eines Moleküls und dem Stickstoffatom eines zweiten Atoms, wodurch eine Kette mit N-I-Abständen von 2.8 Å entsteht.^[101]

Abbildung E2 Elementarzelle von 39 mit Ansicht entlang der b-Achse.

Die Umgebung des Stickstoffatoms der Ph₃PNSiMe₃-Einheit kann man als leicht verzerrte trigonal planare Koordination mit einem I-N-P-Si-Diederwinkel von 177.7(8) und 175.3(7)° beschreiben. Die N1-I1-C1-Einheit ist fast linear (179.11(1)°). Im Gegensatz zum gasförmigen ICN ist das I1-C1-N2-Fragment leicht gewinkelt (176.12(1)°).

		39	
Formel		C ₂₂ H ₂₄ IN ₂ PSi	
Molekulargewicht $[g \cdot mol^{-1}]$		502.39	
Gitterkonstanten [Å]	-	$a = 26.991(5), \beta = 92.05(3)$	
		b = 8.338(2),	
		c = 42.892(9)	
Zellvolumen [Å ³]		9647(4)	
Zahl der Formeleinheiten	pro Zelle	16	
Dichte (ber.) $[g \cdot cm^{-3}]$		1.384	
Kristallsystem, Raumgrup	ope	monoklin, C2/c	
Kristallgröße [mm]		$0.4 \times 0.4 \times 0.3$	
Messgerät		(STOE-IPDS)	
Strahlung		Mo-K _{α} $\lambda = 0.71073$	
Messtemperatur		293(2) K	
Messbereich		$\theta = 1.51 - 18.43$	
Indexbereich h _{min}	/max	-24/23	
k _{min}	/max	-7/7	
l _{min} /	max	-0/37	
Zahl der gemessenen Ref	lexe	6237	
Zahl der unabhängigen R	eflexe	3435 [R(int) = 0.0313]	
Zahl der beobachteten Re	flexe mit I	2732	
$> 2\sigma I$			
F(000)		4032	
Strukturaufklärung		Direkte Methoden	
Verfeinerung		Vollmatrix gegen F^2	
Anzahl der Parameter		437	
Verwendete Rechenprogramme		SHELXL-93, SHELXS-86	
Goodness-of-Fit on F^2		1.036	
Gütefaktoren R (I > 2 σ I)	2	R1 = 0.0396; wR2 = 0.0982	
Restelektronendichten [e	$\cdot A^{-3}$]	$\Delta \rho_{\rm max} = 0.509; \ \Delta \rho_{\rm min} = -0.421$	

Tabelle E2Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von39.

E1.3 Bindung im [Ph₃PN(SiMe₃) ·ICN] (39)

Ein einfache VB-Betrachtung im NBO-Bild führt zu den drei Lewis-Formeln **K-M** (Abbildung E3). In keiner dieser Lewis-Strukturen hat das P-Atom bzw. I-Atom seine Valenzschale erweitert, um 3d- bzw. 5d-Orbitale zur Ausbildung einer Elektronenpaarbindung zu verwenden. Die Populationen der d-AOs sind so gering (P: [core]3s(0.83)3p(1.98)3d(0.07); I: [core]5s(1.93)5p(4.69)5d(0.01)), dass erweiterte Valenzschalen-VB-Strukturen nur in einem sehr geringem Maße zum Resonanzschema beitragen.^[37] Die berechneten Partialladungen ($Q_N = -1.74e, Q_P = +2.11e$ und $Q_I = +0.37e$, Tabelle E3) und kovalenten Bindungsordnungen [BO(N–P) = 0.71, BO(N–I) = 0.05] deuten darauf hin, dass die Resonanzstruktur **K** (energetisch

günstigste Lewis-Formel im NBO Bild) mit einer P-N- und Si-N-Einfachbindung und zwei freien Elektronenpaaren am N-Atom der Ph₃PNSiMe₃-Einheit die primäre Lewis-Struktur für **39** darstellt.

Partialladung	ICN ^[a]	39 ^[b]
N(PNSi)	-	-1.744
Ι	0.3588	0.3730
C(ICN)	-0.0290	-0.0300
N(ICN)	-0.3300	-0.4075
Ladungstransfer	0.0640	
Donor-Acceptor-		
Wechselwirkung		
$\Sigma E^{(2)}$ [ICN \rightarrow Me ₃ SiNPPh ₃]		9.8
$\Sigma E^{(2)}$ [Me ₃ SiNPPh ₃ \rightarrow ICN]		28.8
Total E ⁽²⁾		38.6
$\mathrm{E}^{(2)}[\mathrm{sp}^{7.10}\text{-}\mathrm{LP}(\mathrm{N}) \to \sigma^*(\mathrm{IC})]^{[\mathrm{c}]}$	-	13.1
$\mathrm{E}^{(2)}[\mathrm{sp}^{14.30}\text{-}\mathrm{LP}(\mathrm{N}) \to \sigma^*(\mathrm{IC})]^{[c]}$	-	9.74
$\mathrm{E}^{(2)}[p_{\mathrm{x}}\text{-}\mathrm{LP}(\mathrm{I}) \rightarrow \pi_{\mathrm{x}}^{*}(\mathrm{CN})]^{[\mathrm{d}]}$	19.7	18.0
$\mathrm{E}^{(2)}[p_{\mathrm{y}}\text{-}\mathrm{LP}(\mathrm{I}) \to \pi_{\mathrm{y}}^{*}(\mathrm{CN})]^{[\mathrm{d}]}$	19.7	19.0

Tabelle E3NBO-Analyse von ICN und **39** (Partialladungen in e, Energien in
kcal mol⁻¹).

^[a] Gasphasen-Gleichgewichtsstruktur wurde verwendet.^[102]

^[b] X-ray-Struktur.

^[c] LP = *lone pair*, beide freien Elektronenpaare am N-Atom sind fast ausschließlich p-AOs.
 ^[d] ICN liegt auf der z-Achse.

Landis *et al.* haben darauf hingewiesen, dass ionisch-kovalente Resonanzen besonders dann begünstigt sind, wenn eine lineare Anordnung vorliegt^[103], was sehr schön im Einklang mit dem experimentell gefundenen Winkel für die N1-I1-C1-Einheit in **39** ist (179.11(1)°).

Um die *closed shell – closed shell* Wechselwirkung näher zu untersuchen, wurden die intramolekularen Donor-Acceptor-Wechselwirkungen zwischen den beiden *closed-shell*-Fragmenten berechnet. Es wurden zwei relativ schwache Wechselwirkungen zwischen den beiden freien Elektronenpaaren (p-AOs) des N-Atoms des

Ph₃PNSiMe₃-Fragmentes mit dem leeren antibindenden σ^* -Orbital des ICN-Fragmentes (Tabelle E3) gefunden. Diese Wechselwirkung entspricht einer Resonanz zwischen den Lewis-Strukturen $\mathbf{K} \leftrightarrow \mathbf{L}$ und $\mathbf{K} \leftrightarrow \mathbf{M}$. Die mit dieser Resonanz verknüpfte Energie beträgt 10 and 13 kcal mol⁻¹ (Tabelle E3, Abbildung E3). Die Aufteilung der Gesamtwechselwirkung zwischen den beiden Fragmenten (Ph₃PNSiMe₃ und ICN) zeigt, dass hauptsächlich die Orbitale des Ph₃PNSiMe₃-Fragmentes als Donororbitale fungieren, während die ICN-Orbitale als Acceptor wirken (Tabelle E3). Mit diesen beiden nichtkovalenten Wechselwirkungen (0.064 *e*) ist nur ein sehr geringer Ladungstransfer verbunden. Die genauere Untersuchung der Ladungsverteilung ergab einige interessante Details:

- (i) Bei Adduktbildung erfolgt eine Ladungsumverteilung im ICN-Fragment, wobei die CN-Gruppe 0.079*e* aufnimmt und das Iodatom sogar noch positiver wird $(Q_{I,-addukt} = +0.373e vs. Q_I = +0.359e im ,,nackten" ICN).$
- (ii) Das π -System ist ähnlich der Situation im "nackten" ICN. Es gibt zwei Wechselwirkungen von zwei der drei freien Elektronenpaare des Iods (beide p-AOs) mit den $\pi^*(CN)$ -Orbitalen, was einer Resonanz zwischen den Lewis-Strukturen $N \leftrightarrow O \leftrightarrow P$ (Abbildung E4) entspricht.

Abbildung E4Lewis-Strukturen von ICN, die die Delokalisation der π -
Bindungen beschreiben.

E1.4 Raman-Spektroskopie

ausgezeichnete Normalschwingungen konnten dem ICN-Fragment in Drei [Me₃SiN(PPh₃) · ICN] zugeordnet werden. Der Vergleich mit den experimentellen Daten von gasförmigem, festem ICN und ICN in polaren bzw. unpolaren Lösemitteln ist interessant (Tabelle E4). Die I-CN-Streckschwingung ist aufgespalten ($v_2 = 421$ und 415 cm⁻¹), was im Einklang mit den zwei unabhängigen (und strukturell verschiedenen) Molekülen in der Elementarzelle ist. Verglichen mit ICN-Gas ($v_2 =$ 485 cm⁻¹, v_{I-C}) und ICN gelöst in CCl₄ ($v_2 = 487$ cm⁻¹) erscheint die Wellenzahl der I-C-Streckschwingung (v_2) aller Addukte bei tieferer Wellenzahl, was auf eine längere I-C-Bindung hinweist. Dies kann im Falle des [Me₃SiN(PPh₃) · ICN] am besten mit dem zuvor beschriebenen Elektronentransfer von der Ph₃PNSiMe₃-Einheit in das σ *(I-X)-Orbital des ICN-Moleküls erklärt werden (Abbildung E3, Tabelle E3). Ähnliche Wechselwirkungen können für alle anderen Addukte ebenfalls diskutiert werden. Analog bewirkt im festen ICN die Wechselwirkung des freien Elektronenpaares am N-Atom der einen ICN-Einheit mit dem $\sigma^{*}(I-C)$ -Orbital der zweiten ICN-Einheit (ICN: $\rightarrow \sigma^{*}(I-CN)$) die Wellenzahlerniedrigung für v₂. Die Lage der Beugeschwingung ($v_3 = 325 \text{ cm}^{-1}$) ist nur sehr geringfügig durch die Komplexierung beeinflußt; ebenso die Lage von v_1 , die nur geringfügig zu tieferer Wellenzahl verschoben wird.

	v ₁ (C-N)	v ₂ (I-C)	v ₃ (ICN- Deformation)
Gas ^[a]	2188	485	304
Feststoff	2169	456	329
CCl ₄ ^[b]	2168	487	319
Pyridin ^[b]	2157	429	333
$I(CN)_2^{-[c]}$	2126	422/425 ^[c]	351/337
39	2147	415/421	325

Tabelle E4 Schwingungsdaten von ICN und ICN-Addukten [cm⁻¹].

^[a] Literaturstelle [23].

^[b] Literaturstelle [95].

^[c] symm. und antisymm. Modi, Literaturstelle [104].

E1.5 Reaktion von Ph₃PNSiMe₃ mit BrCN und PPh₃

E1.5.1 Ergebnisse und Diskussion

Interessanterweise kristallisierte bei der Reaktion von Ph₃PNSiMe₃ mit BrCN (im Überschuß) und Zugabe von Triphenylphosphan eine Verbindung der Zusammensetzung [Ph₃PNPPh₃]⁺Br⁻NCC(NH)C(NH)CN in geringen Ausbeuten aus. Die Bildung von 2,3–Diiminosuccinonitril ist erstaunlich. Nach der Abspaltung der Trimethylsilylschutzgruppe und Bildung des Ph₃PNPPh₃⁺-Kations wurde die Lösung bei Raumtemperatur zur Kristallisation stehen gelassen. Vermutlich führt die Reaktion zu Trimethylsilylcyan, das teilweise unter HCN-Abstraktion zur Bildung von HCN und Dicyan führt (Gleichung E2). Die Bildung von 2,3–Diimino-succinonitril kann nur durch die Reaktion des gebildeten Dicyans mit HCN erklärt werden (Gleichung E3). Dies würde dem gängigen in der Literatur beschriebenen Syntheseweg zur Darstellung von 2,3–Diiminosuccinonitril entsprechen und stellt auch hier den wahrscheinlichsten Ablauf dar.^[105]

$$\mathbf{38} + PPh_3 + BrCN - \mathbf{Ph}_3PNPPh_3^+ + Br^- + Me_3SiCN$$
$$\mathbf{Br}_3PNPPh_3^+ + Br^- + Me_2Si=CH_2 + HCN$$
(E2)

$$Me_{3}SiCN + BrCN \longrightarrow Me_{3}SiBr + (CN)_{2}$$

$$(CN)_{2} + 2 HCN \longrightarrow HN C - C NH$$

$$N = C - C NH$$
(E3)

E1.5.2 Molekülstruktur von $[Ph_3PNPPh_3]^+[NCC(NH)C(NH)CN]Br^-(40)$

Interessanterweise kristallisiert das gebildete 2,3–Diiminosuccinonitril mit $[Ph_3PNPPh_3]^+Br^-$ zusammen aus. Dies könnte aufgrund der Wasserstoff-Brom-Wechselwirkungen im Sinne einer H-Brückenbindung möglich sein (Siehe Abbildung E5). Die hinzugerechneten Positionen der H-Atome sind 2.361 und 2.611 Å vom Br⁻-Ion entfernt. Der van-der-Waals-Radius beträgt für Br 1.9 Å und 1.4 Å für H. Somit sollte es in **40** zur Ausbildung von Wasserstoffbrückenbindungen kommen.

40 kristallisiert mit vier Formeleinheiten in einer orthorombischen Zelle mit der Raumgruppe *P*bca. Die wichtigsten Bindungslängen und -winkel sind in Tabelle E5 angegeben. Die Molekülstruktur von **40** ist in Abbildung E5 dargestellt. Die Bindungslängen im freien 2,3–Diiminosuccinonitril unterscheiden sich aufgrund der verschiedenen intermolekularen Wechselwirkungen leicht von den hier gemessenen. So ist der C1A-N1A-Abstand (1.155 Å) etwas größer als der im freien 2,3–Diiminosuccinonitril (1.132 Å).^[106] Die größten Abweichungen (ca. 0.05 Å) zeigen sich bei den Bindungslängen C2A-N2A (1.296 Å und 1.244^[106] Å) und C2A-C2A (1.434 Å und 1.492 Å). Die kristallographischen Daten sind in Tabelle E6 angegeben.

- Abbildung E5Molekülstruktur von 40. Ellipsoide der thermischen Schwingung
mit 50% Aufenthaltswahrscheinlichkeit bei 200 K.
Bindungslängen in [Å].
- **Tabelle E5**Ausgewählte Bindungslängen [Å] und -winkel [°] für 40.

P(1)–N(1)	1.600(3)	P(1)–N(1)–P(2)	140.9(2)
P(2)–N(1)	1.629(3)	N(1A)-C(1A)-C(2A)	179.9(2)
N(1A)C(1A)	1.155(3)	N(2A)-C(2A)-C(2A) ^[a]	121.6(2)
C(1A)–C(2A)	1.542(3)	N(2A)-C(2A)-C(1A)	128.7(2)
C(2A)–N(2A)	1.296(3)	C(2A) ^[a] -C(2A)-C(1A)	109.7(2)
C(2A)-C(2A) ^[a]	1.434(2)	C(2A)–N(2A)–H(2A)	114.0(2)
N(2A)–H(2A)	0.874(2)	N(2A)-H(2A)-Br(1)	163.4(1)
H(2A)–Br(1)	2.361(0)	Br(1)-H(2)-C(2)	144.1(2)
Br(1)–H(2)	2.611(0)	H(2A)–Br(1)–H(2)	127.08(1)
^[a] -X, -Y, -Z.			

		40
Formel		$C_{76}H_{62}Br_2N_6P_4$
Molekulargewic	ht $[g \cdot mol^{-1}]$	1343.049
Gitterkonstanten	[Å]	a = 16.6610(2),
		b = 19.2019(2),
		c = 20.4732(2)
Zellvolumen [Å ³]	6549.8(1)
Zahl der Formele	einheiten pro Zelle	4
Dichte (ber.) [g ·	cm^{-3}	1.36200(3)
Kristallsystem, F	Raumgruppe	orthorombisch Pbca
Kristallgröße [m	m]	0.21×0.14×0.06
Messgerät		Kappa CCD, 95 mm CCD Kamera
		auf \k-goniostat
Strahlung		Mo-K _{α} $\lambda = 0.71073$
Messtemperatur		200(2)
Messbereich		$2\theta = 0.998 - 27.485^{\circ}$
Indexbereich	h _{min/max}	-21/21
	$\mathbf{k}_{\min/\max}$	-26/26
	l _{min/max}	-24/24
Zahl der gemesse	enen Reflexe	109009
Zahl der unabhän	ngigen Reflexe	7508 $[R_{int} = 0.1000]$
Zahl der beobaci $I > 2\sigma I$	hteten Reflexe mit	5266
F(000)		2760
Strukturaufkläru	ng	Direkte Methoden
Verfeinerung	-	Vollmatrix gegen F^2
Anzahl der Paran	neter	385
Verwendete Rec	henprogramme	SHELXL-97, SHELXS-97 ^[107]
Goodness-of-Fit	on F^2	1.123
Gütefaktoren $R(I > 2\sigma I)$		R1 = 0.0471; wR2 = 0.1194
Restelektronendi	ichten [$e \cdot A^{-3}$]	$\Delta \rho_{\rm max} = 0.505, \ \Delta \rho_{\rm min} = -0.577$

Tabelle E6Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von
40.

E2 Pseudohalogen-Kronenetherkomplexe – [K([18]krone–6)(X)(OPPh₃)] (X = N₃⁻, OCN⁻, SCN⁻ und SeCN⁻)

E2.1 Einführung – Bisheriger Kenntnisstand

Die Fähigkeit der Kronenether, speziell des [18]Krone–6 Ethers, mit Alkali-, Ammonium-, Uran-, Transuran- und Thalliumionen stabile Komplexe zu bilden ist schon lange bekannt und wurde sowohl im Festkörper als auch in Lösung eingehend untersucht^[108,109]. Durch die Bildung dieser stabilen Komplexe sind Kronenether gute Phasentransferkatalysatoren und eignen sich hervorragend für den Halogen/-Pseudohalogenaustausch, da die Löslichkeit der entsprechenden Kaliumsalze in organischen Lösemitteln erhöht wird. So konnten z.B. Walsh, Derby und Smegal^[110] zeigen, dass der Einsatz von katalytischen Mengen [18]Krone–6 die Reaktionszeiten der Halogensubstitution bei der Umsetzung von Hexachlorocyclotriphosphazen mit Kaliumfluorid bzw. Kaliumthiocyanat stark verkürzt und die Aufarbeitung erheblich vereinfacht wird.

E2.2 Ergebnisse und Diskussion

In Anlehnung an die Arbeiten von Walsh et al. wurde versucht, den Halogen/-Pseudohalogenaustausch in Hexachlorocyclotriphosphazen mittels [18]Krone-6/KX (X = Pseudohalogen) durchzuführen. Hexapseudohalogenido-cyclotriphosphazene sind z. T. sehr schwer zu kristallisieren, da sie mit Ether bzw. Tetrahydrofuran leicht Öle bilden. Ausgehend vom Hexachlorocyclotriphosphazen wollten wir in einem Syntheseschritt das Staudingerprodukt vom Hexazidocyclotriphosphazen darstellen, welches leichter zu kristallisieren sein sollte. Bei der Umsetzung von Hexachlorocyclotriphosphazen, Triphenylphosphan, Kaliumazid und [18]Krone-6 in THF kristallisiert jedoch nicht das erwartete Staudingerprodukt, Hexa(triphenyl)phospaniminotricyclophosphazen (Ph₃PN)₆(PN)₃, sondern der Kronenetherkomplex 41 aus. Die gewünschte Substitution des Chlorids durch Azid konnte nicht beobachtet werden. Im Kronenetherkomplex 41 wird das Kaliumkation ober- und unterhalb des Kronenetherrings von einem Molekül Triphenylphosphanoxid und von einem Azidanion koordiniert. Dieses überraschende Ergebnis wurde verständlich, als wir das eingesetzte THF näher untersuchten, wobei festgestellt wurde, dass es größere Mengen an Peroxid (10 - 20 mg pro Liter) enthielt. Das eingesetzte Triphenylphosphan wurde durch die im THF enthaltenen Peroxide zum Triphenylphosphanoxid oxidiert und koordiniert bei der Kristallisation über das Sauerstoffatom an das Kaliumkation. Eingehende Untersuchungen des Peroxideinflusses zeigten:

- (i) Der Peroxidgehalt von peroxidhaltigem THF sinkt unter die Nachweisgrenze (< 1 mg pro Liter) bei der Zugabe von Triphenylphosphan;
- Wenn peroxidfreies THF eingesetzt wird, tritt keine Komplexbildung unter Beteiligung von Triphenylphosphanoxid ein.
- (iii) Bestrahlung des Lösemittels THF mit UV-Licht ($\lambda = 254$ nm, 12 h) führt zu wesentlich besseren Ausbeuten.
- (iv) Versuche, Triphenylphosphanoxid direkt einzusetzen, gelangen ebenfalls, allerdings erhält man auf diesem Wege keine für die Einkristallröntgenstrukturanalyse geeigneten Kristalle. Nur eine sehr geringe Konzentration an Triphenylphosphanoxid scheint benötigt zu werden, um eine langsame Kristallisation von 41, 42 und 43 zu gewährleisten.

$$[18] \text{Krone-6} + \text{PPh}_{3} \xrightarrow{\text{THF}} \text{UV} \xrightarrow{\text{KOCN}} \text{K}([18] \text{krone-6})(\text{OCN})(\text{OPPh3}) \\ \xrightarrow{\text{42}} \text{KSCN} \times \text{K}([18] \text{krone-6})(\text{SCN})(\text{OPPh3}) \\ \xrightarrow{\text{43}} \text{43} \qquad (E4) \\ \xrightarrow{\text{KN}_{3}} \text{K}([18] \text{krone-6})(\text{NNN})(\text{OPPh3}) \\ \xrightarrow{\text{41}} \text{KSeCN} \times \text{K}([18] \text{krone-6})(\text{SeCN})(\text{OPPh3}) \\ \xrightarrow{\text{44}} \text{44}$$

Die [K([18]krone–6)(X)(OPPh₃)]-Komplexe der anderen Pseudohalogenide (X = OCN, SCN, SeCN, Gleichung E4) können analog dargestellt werden, indem KX/([18]Krone–6) mit Triphenylphosphan in mit UV-Licht (λ = 254 nm) bestrahltem THF 12 h zur Reaktion gebracht werden. Kristallisation aus diesen Lösungen ergab die kristallinen Produkte **41**, **42**, **43** und **44** in Ausbeuten bis zu 20 %. Die Kronenetherkomplexe **41**, **42**, und **43** konnten mit Hilfe der Raman-, IR-Spektroskopie und der Röntgenstrukturanalyse charakterisiert werden.

E2.3 Schwingungsspektroskopie

Im Schwingungsspektrum (Raman, IR) von **41** wurde für das Fragment N_3 neben der antisymmetrischen Valenzschwingung der Azidgruppe bei 2006 cm⁻¹ (IR) auch die symmetrische Valenzschwingung bei 1320 cm⁻¹ (Raman) beobachtet. Die Intensitäten der antisymmetrischen Valenzschwingungen sind selbst bei sehr kovalenten Aziden meist sehr schwach und nehmen noch an Intensität ab, wenn die Bindung mehr ionische Anteile hat. Nach dem Ausschlussprinzip sollte die antisymmetrische Valenzschwingung bei ionischen Aziden nicht im Raman-Spektrum auftreten. In diesem Fall liegt ein nahezu ionisches Azid vor, welches nur sehr geringe kovalente Bindungsanteile zum Kaliumion hat und es wurde deshalb keine Bande im Raman-Spektrum gefunden.

Die symmetrische und antisymmetrische Valenzschwingung des ionischen Azides (KN₃) findet man bei 2041 und 1344 cm⁻¹. In **42** findet man die analogen Valenzschwingungen der Cyanatgruppe bei 2138 cm⁻¹ und 1275 cm⁻¹. Verglichen mit den Wellenzahlen im KOCN (2155 und 1282 cm⁻¹) sind die Wellenzahlen beider Valenzschwingungen in **42** ebenfalls zu niederen Wellenzahlen hin verschoben. Das Raman-Spektrum der Verbindung **43** zeigt eine Aufspaltung der antisymmetrischen Valenzschwingung des Isothiocyanatoliganden (v = 2069 und 2063 cm⁻¹), die bei den Verbindungen **41** und **42** nicht auftritt. Interessanterweise weist auch der Selenocyanatokomplex, [K([18]krone–6)(SeCN)(OPPh₃)], diese Aufspaltung nicht auf (2075 cm⁻¹). Bisher ist es leider nicht gelungen für die Einkristall-röntgenstrukturanalyse geeignete Kristalle dieser Verbindung zu züchten.

E2.4 Kristallstrukturanalyse

Die drei Komplexsalze **41**, **42** und **43** kristallisieren isotyp in der rhombischen Raumgruppe *R*3m mit jeweils drei Formeleinheiten pro Elementarzelle. Tabelle E7 enthält die kristallographischen Daten und Angaben zu den Strukturlösungen; in den Tabellen E9 und E10 sind die wichtigsten Bindungslängen und -winkel der Verbindungen **41** und **42** wiedergegeben. Die Koordinationssphäre des Kaliumkations wird durch den Kronenetherliganden, ein Molekül Triphenylphosphanoxid und das Pseudohalogenanion gebildet. Die Pseudohalogenide in **41**, **42** und **43** sind um eine dreizählige Achse fehlgeordnet (siehe Abbildung E7). Die Molekülstrukturen von **41**, **42** und **43** (ohne Fehlordnung) sind in Abbildung E6 dargestellt. Da sich die Zelldaten nur wenig unterscheiden, ist in Abbildung E7 exemplarisch die Ansicht der Elementarzelle des Kronenetherkomplexes **41** mit Blick in Richtung der a- und c-Achse abgebildet.

Abbildung E6Molekülstruktur von 41, 42 und 43. Ellipsoide der thermischen
Schwingung mit 50% Aufenthaltswahrscheinlichkeit bei 293 K.

In allen drei Komplexen liegt die Pseudohalogeneinheit, wie in kovalenten Pseudohalogenen üblich, gewinkelt – bezogen auf das Kaliumkation-Zentrum in einer *trans*-Struktur – vor.^[85] So wird in **41** ein Winkel von 169.6° für die Azidgruppe und in **42** ein Winkel von 163.4° für die Cyanatgruppe gefunden. Gewinkelte Pseudohalogeneinheiten sind normalerweise ein Charakteristikum für partiellen kovalenten Charakter der Bindung zwischen dem Azid und dem Rest R (R = organischer Rest, Halogen oder Metall).^[111]

Die Abweichung von der Linearität der Pseudohalogenidgruppe in nahezu ionischen Verbindungen lässt Packungseffekte, die zu einer asymmetrischen Umgebung für das Pseudohalogenid führen, oder aber geringe kovalente Bindungsanteile vermuten.

Abbildung E7 Darstellung der Elementarzelle und angrenzender Formeleinheiten von [K([18]Krone–6)(N₃)(OPPh₃)] (41). Blickrichtung entlang der a- und c-Achse. Ohne H-Atome.

		$[K([18]krone-6)(Ph_3PO)(N_3)]$	[K([18]krone–6)(Ph ₃ PO)(OCN)]	$[K([18]krone-6)(Ph_3PO)(NCS)]$
Formel		$C_{30}H_{39}KN_{3}O_{7}P$	$C_{31}H_{39}KNO_8P$	C ₃₁ H ₃₉ KNO ₇ PS
Molekulargewicht [g · 1	nol^{-1}]	623.71	623.70	639.76
Gitterkonstanten [Å]	-	a = b = 14.213(2)	a = b = 14.239(2)	a = b = 14.339(2)
		c = 13.951(2)	c = 13.893(1)	c = 14.266(2)
Zellvolumen [Å ³]		2440.6(6)	2439.2(6)	2540.1(5)
Zahl der Formeleinheite	en pro Zelle	3	3	3
Dichte (ber.) $[g \cdot cm^{-3}]$		1.273	1.274	1.255
Kristallsystem, Raumgr	ruppe	rhomboedrisch, R3m	rhomboedrisch, R3m	rhomboedrisch, R3m
Kristallgröße [mm]		$0.13 \times 0.23 \times 0.57$	$0.23 \times 0.37 \times 0.57$	$0.23 \times 0.47 \times 0.53$
Messgerät		CAD4 (Nonius, 1977)	CAD4 (Nonius, 1977)	CAD4 (Nonius, 1977)
Strahlung		Mo-K _{α} $\lambda = 0.71073$	Mo-K _{α} $\lambda = 0.71073$	Mo-K _{α} $\lambda = 0.71073$
Messtemperatur		293(2) K	293(2) K	293(2) K
Messbereich		$\theta = 2.21 - 23.96$	$\theta = 2.86 - 23.95^{\circ}$	$\theta = 2.86 - 23.94$
Indexbereich	h _{min/max}	-16/16	-16/0	-14/14
	$\mathbf{k}_{\min/\max}$	-13/13	0/14	-16/16
	l _{min/max}	-15/15	-15/15	-16/16
Zahl der gemessenen R	eflexe	1572	966	1532
Zahl der unabhängigen	Reflexe	968 [R(int) = 0.0179]	966 [R(int) = 0.0000]	1010 [R(int) = 0.0117]
Zahl der beobachteten I	Reflexe mit I > $2\sigma I$	935	925	958
F(000)		990	990	1014
Strukturaufklärung			Direkte Methoden	
Verfeinerung			Vollmatrix gegen F^2	
Anzahl der Parameter		91	94	101
Verwendete Rechenpro	gramme		SHELXL-93, SHELXS-86 ⁸⁸	
Goodness-of-Fit on F^2		1.110	0.999	1.090
Gütefaktoren R (I > 2σ I)	R1 = 0.0249; wR2 = 0.0632	R1 = 0.0257; wR2 = 0.0677	R1 = 0.0264; w $R2 = 0.0720$
Restelektronendichten	$e \cdot A^{-3}$	$\Delta \rho_{\rm max} = 0.121; \ \Delta \rho_{\rm min} = -0.110$	$\Delta \rho_{\rm max} = 0.139; \ \Delta \rho_{\rm min} = -0.142$	$\Delta \rho_{\rm max} = 0.116; \ \Delta \rho_{\rm min} = -0.195$

Tabelle E7Kristalldaten und Angaben zu den Kristallstrukturbestimmungen von 41, 42 und 43.

Die berechneten Mulliken-Partialladungen für das Kaliumion von +0.76 (**41**) und +0.80 (**42**) unterstreichen den vorwiegend ionischen Charakter der K⁺ - N₃⁻ bzw. OCN⁻ Bindung.^[112] (Tabelle E8). Sowohl in **41** als auch in **42** findet jedoch ein nicht zuvernachlässigender Ladungstransfer der Ligandensphäre (OPPh₃, [18]Krone–6 und Pseudohalogenid) von 0.24e (**41**) und 0.20e (**42**) zum Kaliumkation hin statt. Die Aufteilung des Gesamtladungstransfers in seine Bestandteile zeigt, dass der größte Anteil von *ca.* 0.11*e* (**41**) bzw. 0.09*e* (**42**) vom Pseudohalogenid-Anion übertragen wird. An nächster Stelle kommt der Kronenether mit *ca.* 0.09*e* (**41**) bzw. 0.07*e* (**42**). Der OPPh₃-Ligand überträgt nur 0.03*e* (**41**) bzw. 0.03*e* (**42**).

	41		42
N	-0.60	0	-0.74
Ν	0.30	С	0.50
Ν	-0.60	Ν	-0.67
Κ	0.76		0.80
$q_{\rm ct}({\rm N_3}^-)$	0.11	$q_{\rm ct}({\rm OCN}^-)$	0.09
$q_{\rm ct}({\rm OPPh}_3)$	0.03		0.03
$q_{\rm ct}([18]$ Krone–6)	0.10		0.07
$q_{\rm ct}({\rm total})$	0.24		0.20

Tabelle E8Berechnete Mulliken-Partialladungen und Ladungstransfer in e
(B3LYP/6-31G(d,p)).

Sowohl für den OCN⁻- als auch den SCN⁻-Kronenetherkomplex (**42**, **43**) sind zwei verschiedene Koordinationen denkbar, da unterschiedliche terminale Donoratome in beiden Pseudohalogeniden auftreten. Pearson^[90] hat das Konzept der harten und weichen Säuren bzw. Basen eingeführt (HSAB). Für ionische Verbindungen sollte demnach die Koordination an die harte Säure K⁺ über eine harte oder wenn zwei Möglichkeiten bestehen, bevorzugt über die härtere Base führen. In Einklang mit diesem Prinzip fanden wir für das OCN⁻-Ion den Kaliumcyanatokomplex **42**. Im Kronenetherkomplex **43** ist neben einer K–NCS Anordnung noch eine K–SCN Koordination denkbar. Diese Fehlordnungstendenz des Thiocyanats tritt auch bei

anderen Kaliumthiocyanatkronenetherkomplexen^[113,114,115] auf. Da die Fehlordnung in diesem Fall nicht vollständig gelöst werden konnte, muss auf die Diskussion der Bindungslängen und -winkel des Isothiocyanatokomplexes verzichtet werden. Für die teilweise Umkehrung der Konnektivität (Thiocyanat *vs.* Isothiocyanat) spricht auch die bereits beschriebene Aufspaltung der antisymmetrischen Valenzschwingung des Thiocyanatoliganden im Raman-Spektrum.

Das Kaliumatom liegt bei allen untersuchten Komplexen im Zentrum des Kronenethers. Der mittlere Abstand zwischen dem Zentralatom und den Sauerstoffatomen des Kronenethers beträgt in **41** 2.81 Å, in **42** 2.79 Å und in **43** 2.82 Å und liegt damit jeweils nur wenig über der Summe der van-der-Waals-Radien für O und K⁺ (2.73 Å, Tabelle F.9 und F.10).^[116] Im reinen KSCN-Kronenetherkomplex^[115] wurde ein Abstand von 2.80 Å bestimmt. Die Kaliumionen sind in Verbindung **41** und **42** um 0.27 Å bzw. 0.29 Å aus der Kronenetherebene in Richtung der Pseudohalogenidgruppe verschoben und sind über das Sauerstoffatom mit den Triphenylphosphanoxidliganden verbunden (2.705 Å im Azid- und 2.718 Å im Cyanat-Komplex).

Tabelle E9Ausgewählte Bindungslängen [Å] und -winkel [°] in[K([18]krone-6)(N3)(OPPh3)] (41).

N(1)–N(2)	1.125(9)	N(1)-N(2)-N(3)	170(1)
N(2)–N(3)	1.22(1)	K(1)–N(1)–N(2)	156(1)
N(1)–K(1)	2.776(7)	O(3)–K(1)–N(1)	173.2(3)
K(1)–O(3)	2.705(3)	P(2)–O(3)	1.487(3)

Tabelle E10Ausgewählte Bindungslängen [Å] und -winkel [°] in[K([18]krone-6)(OCN)(OPPh_3)] (42).

O(4)–C(9)	1.22(1)	O(4)–C(9)–N(1)	163(3)
C(9)–N(1)	1.23(2)	K(1)-O(4)-C(9)	144.8(7)
K(1)–O(4)	2.739(7)	O(3)–K(1)–O(4)	169.3(2)
K(1)-O(3)	2.718(3)	P(2)–O(3)	1.486(3)

Der Abstand vom Zentralatom zu den Anionen steigt vom Cyanat (2.739 Å) über das Azid (2.776 Å) zum Isothiocyanat (2.974 Å) leicht an. Die hier gefundenen Strukturdaten weichen nur geringfügig von den Werten anderer, ebenfalls fehlgeordneter Kronenetherkomplexe^[113] (2.87 und 2.94 Å, Kaliumthiocyanato-komplex von 2,6–Diketo–[18]krone–6) ab.

Auffallend ist, dass die Bindungslängen in den Pseudohalogeniden, entgegen der Norm, zwischen den α -Atomen und den β -Atomen (1.125 Å in **41** und 1.221 Å in **42**) kürzer als zwischen den β -Atomen und γ -Atomen (1.219 Å in **41** und 1.229 Å in **42**) sind. Diese Problematik ist auch schon bei Strukturen von Platin-Azid-Komplexen ([Pt(N₃)₆]^{2–}, [Pt(N₃)₄]^{2–}, [Me₃PtN₃]₄) und Antimon(III)chlordiazid in Erscheinung getreten.^[117]

E3 Reaktion von Hexachlorocyclotriphosphazen mit Pseudohalogeniden

E3.1 Einführung – Bisheriger Kenntnisstand

Hexachlorocyclotriphosphazen (NPCl₂)₃ (**45**) und das tetramere Analogon (NPCl₂)₄ (**46**) sind sehr interessante Verbindung für die Polymerchemie, da sie schon bei Temperaturen um 250°C unter Ringöffnung polymerisieren (NPCl₂)_n (**47**). Die trimeren und tetrameren Phosphazene werden auch als kleine Modellverbindungen für die Untersuchung der ähnlichen Chemie der hochpolymeren Phosphazene genutzt.^[118] Aus diesem Grund wurden schon sehr viele cyclische und offenkettige, polymere Phosphazene mit organischen, anorganischen und metallorganischen Substituenten synthetisiert.^[119]

Abbildung E8

Die nucleophile Substitution des Chlorids durch das Pseudohalogenid NCS⁻ führt zu dem für die Polymerchemie wichtigen Hexaisothiocyanatocyclotriphosphazen (**48**). Dieses besitzt die Fähigkeit, schon bei 145°C ein Elastomer zu bilden.^[119b]

E3.2 Hexaisothiocyanatocyclotriphosphazen

Hexaisothiocyanatocyclotriphosphazen wurde erstmals von Otto und Audrieth 1958 durch Reaktion von **45** mit Silber- und Bleithiocyanat in inerten organischen Lösemitteln hergestellt.^[120] Weitere Versuche zeigten, dass sich die entsprechenden Alkalisalze besser für diese Reaktion eignen und zu weitaus besseren Ausbeuten führen.^[121] Da die Phosphazene leicht hydrolisieren, muss in trockenen, polaren Lösemitteln gearbeitet werden. Wie schon in Kapitel E2 erwähnt, haben Walsh, Derby und Smegal die Synthese von Hexafluorocyclotriphosphazen, Hexathiocyanatocyclotriphosphazen und Cyano/Isocyanopentachlorocyclotriphosphazen durch die Einführung von [18]Krone–6 als Phasentransferkatalysator die Versuchsbedingungen und die Ausbeute erheblich verbessert.^[110] Die Kaliumsalze der schwachen Nucleophile F⁻, CN⁻, SCN⁻ und RCOO⁻ lösen sich in Benzen, THF oder Acetonitril nach Zugabe von Kronenether merklich besser und reagieren schon unter milden Versuchsbedingungen meist quantitativ mit organischen und anorganischen Verbindungen.

Die Cyanate und Thiocyanate sollten entsprechend des HSAB-Prinzips mit dem Stickstoff-Atom (harte Base) das Phosphoratom (harte Säure) angreifen. Dies wird auch durch die experimentellen Daten bestätigt. Bei der in Kapitel E2 bereits Hexachlorocyclotriphosphazen besprochenen Umsetzung von mit den Pseudohalogenidverbindungen MX (X = SCN⁻, OCN⁻, N_3^- , SeCN⁻ und CNO⁻, M= Na⁺, K⁺, Li⁺, Ag⁺) wurde eine neue Struktur des bekannten Hexaisothiocyanatocyclotriphosphazen gefunden. Für die Röntgenstrukturanalyse geeignete Einkristalle konnten für die Azid-Verbindung nicht erhalten werden. Die Reaktion mit Cyanaten und Fulminaten führte teilweise zur Bildung von schwer untersuchbaren Polymeren. Das Vorliegen einer kovalent gebundenen Nitriloxyd- oder Cyanat- bzw. Isocyanatgruppe nach der Reaktion konnte anhand der Schwingungsspektren und NMR-Spektren ausgeschlossen werden.

E3.3 Kristallstrukturanalyse

Hexaisothiocyanatocyclotriphosphazen (48) kristallisiert in der monoklinen Raumgruppe *P*2₁/c mit acht Molekülen in der Elementarzelle. In Abbildung E9 sind die zwei unabhängigen Moleküle 48 dargestellt. Wie aus der Röntgenstrukturanalyse hervorgeht, sind die Phosphazenringe nicht planar. Es ist anzunehmen, dass auf Grund der relativ kurzen S-S-Abstände (3.74 Å) intermolekulare Wechselwirkungen auftreten. Dies könnte auch ein Grund für die nicht planaren Phosphazenringe sein. Die Atome N3-P3-N2 bilden eine Ebene, die in einem Winkel von ca. 22° zur Ebene der Atome N3-P1-N1-P2-N2 steht; dies wird auch als Halbsesselkonfiguration bezeichnet. Diese Abweichung von der Planarität ist möglich, da es sich bei cyclischen Phosphazenen nicht um aromatische Verbindungen handelt. Die Bindungssituation kann am besten mit dem Insel-Modell von Dewar beschrieben werden.^[122] Das π -System des Phosphazenrings ist jeweils durch einen Knoten am Phosphoratom unterbrochen. Dadurch erklärt sich der nichtaromatische Charakter der Phosphazene und damit auch die Abweichungen von der Planarität. Die Bindungslängen und -winkel für **48** sind in Tabelle E11 angegeben. Die kristallographischen Daten sind in Tabelle E12 zusammengefasst.

Abbildung E9Molekülstruktur von 48. Ellipsoide der thermischen Schwingung
mit 50% Aufenthaltswahrscheinlichkeit bei 293 K.

P(3)–N(8)	1.63(2)	S(5)-C(5)-N(8)	176.3(6)
N(8)–C(5)	1.18(2)	C(5)–N(8)–P(3)	141.9(6)
C(5)–S(5)	1.53(2)	N(3)-P(3)-N(8)	109.0(3)
P(1)–N(4)	1.63(3)	N(3)-P(3)-N(9)	109.8(3)
N(4)–C(1)	1.16(2)	N(4)–P(1)–N(5)	100.0(3)
C(1)–S(1)	1.54(3)	S(1)-C(1)-N(4)	176.4(6)
N(1)–P(2)	1.57(2)	N(1)–P(2)–N(2)	117.9(2)
N(1)–P(1)	1.57(1)	P(2)–N(2)–P(3)	119.8(3)
N(2)–P(2)	1.57(2)	N(2)-P(3)-N(3)	117.3(2)
N(2)–P(3)	1.57(2)	P(3)–N(3)–P(1)	119.8(3)
N(3)–P(3)	1.58(2)	N(3)–P(1)–N(1)	118.8(2)
N(3)–P(1)	1.56(2)	P(1)-N(1)-P(2)	121.2(3)

 Tabelle E11
 Ausgesuchte Bindungslängen [Å] und -winkel [°]für 48.

Die C-S-Bindung von 1.513 bis 1.545 Å ist zum Teil deutlich kürzer als im $[NP(NMe_2)(NCS)]_3^{[123]}$ mit 1.588 und 1.543 Å. Die N-C-Bindungslängen von 1.161 bis 1.197 Å liegen zwischen einer Zweifach- und Dreifach-C-N-Bindung ($r_{kov}(3) = 1.15$, $r_{kov}(2) = 1.27$ Å, 1.18–1.193 Å in $[NP(NMe_2)(NCS)]_3$).

	48	
Formel	$C_6N_9P_3S_6$	
Molekulargewicht [g mol ⁻¹]	483.42	
	a = 7.977(2),	
	b = 34.551(8)	
Gitterkonstanten [A]	c = 13.691(3),	
	$\beta = 101.98(2)$	
Zellvolumen [Å ³]	3691.1(14)	
Zahl der Formeleinheiten pro	0	
Zelle	0	
Dichte (ber.) $[g \text{ cm}^{-3}]$	1.740	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Kristallgröße [mm]	$0.53 \times 0.43 \times 0.33$	
Messgerät	CAD4 (Nonius 1977)	
Strahlung	Mo-K _{α} $\lambda = 0.71073$	
Messtemperatur	293(2) K	
Messbereich	$\theta = 2.68 - 24.02$	
Indexbereich h _{min/max}	-8/9	
$k_{min/max}$	0/39	
l _{min/max}	-15/0	
Zahl der gemessenen Reflexe	6069	
Zahl der unabhängigen Reflexe	5810 [R(int) = 0.0137]	
Zahl der beobachteten Reflexe	4208	
mit I > 2σ I	4208	
F(000)	1920	
Strukturaufklärung	Direkte Methoden	
Verfeinerung	Vollmatrix gegen F^2	
Anzahl der Parameter	433	
Verwendete	SHELXL-93, SHELXS-86 ^[124]	
Rechenprogramme		
Goodness-of-Fit on F^2	1.059	
Gütefaktoren $R(I > 2\sigma I)$	R1 = 0.0547	
	wR2 = 0.1310	
Restelektronendichten $[e \cdot A^{-3}]$	$\Delta \rho_{\rm max} = 0.406; \ \Delta \rho_{\rm min} = -0.370$	

Tabelle E12Kristallographische Daten zu 48.

Die Bindungen der Phosphoratome zu den exocyclischen Stickstoffatomen liegen im Bereich zwischen 1.633 und 1.645 Å. Diese Bindungslängen entsprechen exakt denen im $[NP(NCS)_2]_3$ ^[119] (1.63 Å) und $[NP(NCS)_2]_4$ ^[125] (1.644 Å). Der Phosphor-Stickstoff-Abstand liegt bei 1.58 Å und ist im Vergleich zum exocyclischen P-N-Abstand in $[NP(NMe_2)_2)]_3$ (1.652 Å),^[126] relativ kurz.

Die NCS-Gruppe ist zum einen eine stark elektronenziehende Gruppe (im σ -System), zum anderen kann sie jedoch durch Elektronenresonanz auch als Donor fungieren (im π -System). Da bei Struktur **Q** (Abbildung E10) die Oktettregel am Phosphor verletzt wird (d-Orbitalbeteiligung am Phosphor zur Ausbildung der Doppelbindung), sollten die ionischen Resonanzstrukturen **R**, **S** und **T** ein höheres Gewicht im Resonanzschema des Grundzustands von Pseudohalogen-substituierten Phosphazenen besitzen. Die Resonanzstruktur **S** wird aufgrund der benachbarten positiven Ladungen (P⁺, N⁺) ein etwas geringeres Gewicht haben.

Abbildung E10Resonanzschema zu Isothiocyanato-substituiertenPhosphazenen.

F Zusammenfassung der Ergebnisse

Das Ziel dieser Arbeit war die Charakterisierung und Synthese neuer Halogen- und Pseudohalogenverbindungen und die Untersuchung mit Hilfe von quantenmechanischen Rechnungen. Im Folgenden sind kurz die Ergebnisse der in den Kapiteln C, D und E vorgestellten Arbeiten zusammengefasst.

Die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung sind in Tabelle F1 aufgeführt. In der letzten Spalte sind die Literaturstellen der bereits veröffentlichten Arbeiten angegeben.

Tabelle F1	Im Rahmen der vorliegenden Arbeit dargestellte und charakterisierte
	Verbindungen.

Verbindung	Schwingungs- spektroskopie	Kernresonanz- spektroskopie	Röntgenstruktur- analyse	Literatur
$[Ph_4P]^+[NSCl_2]^-$ $[Me_4N]^+[NSCl_2]^-$ $[Ph_3BzP]^+[NSCl_3]^-$	Raman, IR Raman, IR Raman	¹⁴ N/ ¹⁵ N-NMR ¹⁵ N-MAS-NMR ¹⁴ N-NMR ¹⁴ N-NMR		[21] [21]
[Ph ₃ PNS(Cl)NPPh ₃] ⁺ [NSCl ₂] ⁻ [Ph ₄ P] ⁺ [NSClBr] ⁻	Raman Raman ^[a]	¹⁴ N-NMR, ³¹ P-NMR	Einkristall	[21]
$[Ph_4P]^{\top}[NSBr_2]^{-}$ Cl ₅ Nb(μ -(SN) ₂)NbCl ₅ ^[b]	Raman ^[a] Raman		Einkristall	
N N N N N N N N N N N N N N N N N N N	Raman, IR	³¹ P-NMR, ¹⁵ N-NMR	Einkristall	[60a], [127], [128]
N3 N3 N3 N3 NPPh3		³¹ P-NMR		[60a], [127], [128]
Ph ₃ PN N NPPh ₃	Raman, IR		Einkristall	[60a], [60b], [127], [128]
Ph ₃ PN N NPPh ₃		³¹ P-NMR		[60a], [60b], [127], [128]

NPPh				
Ph ₃ PN N NPPh ₃	Raman, IR	³¹ P-NMR, ¹ H- NMR, ¹³ C-NMR	Einkristall	[60a], [127], [128]
	Raman	¹³ C-NMR	Einkristall	[127], [128]
OCN N NCO	Raman, IR	¹³ C-NMR, ¹⁴ N-NMR	Einkristall	[127], [128]
NCS N N N N N N N N SCN N NCS	Raman	¹³ C-NMR		
$[K([18]krone-6) (N_2)(OPPh_2)]$	Raman, IR		Einkristall	[129]
[K([18]krone-6) (OCN)(OPPh ₃)]	Raman		Einkristall	[129]
$[K([18]krone-6) (NCS)(OPPh_3)]$	Raman		Einkristall	[129]
[K([18]krone-6) (NCSe)(OPPh ₃)]	Raman			[129]
$(NP(NCS)_{2})_{3}^{[c]}$ $Ph_{3}NSiMe_{3} \cdot ICN$ NCC(NH)C(NH)CN $[(Ph_{3})_{2}N]^{+}Br^{-[d]}$	Raman	¹³ C-NMR	Einkristall Einkristall Einkristall	[130]

^[a] Sehr instabil, daher nur an Hand der SN-Valenzschwingung identifiziert.

^[b] Verbindung bereits bekannt, jedoch nur das IR-Spektrum bekannt.

^[c] Es wurde eine neue Struktur gefunden.

^[d] Röntgenstrukturen sind nur von den einzelnen Verbindungen bekannt.

Durch die Ergebnisse im Rahmen dieser Dissertation konnten neue Erkenntnisse über den Zusammenhang von Struktur und chemischer Bindung der untersuchten Verbindungen gewonnen werden. Des Weiteren konnten mit Hilfe quantenmechanischer Rechnungen neue Erkenntnisse über den Zusammenhang zwischen Stabilität, Ladungsverteilung und Reaktionsverhalten der verschiedensten Halogen und Pseudohalogenverbindungen gewonnen werden. Dabei konnte gezeigt werden, dass die Kombination von experimentellen Methoden, wie Schwingungsspektroskopie, NMR-Spektroskopie und Röntgenbeugung, mit quantenmechanischen Rechnungen ein hervorragendes Mittel ist, um die chemische Bindung von Halogen und Pseudohalogenverbindungen zu beschreiben. Dies konnte eindrucksvoll in den
Studien zu den Thiazylhalogeniden, Triazinpseudohalogenverbindungen und Halogencyan-Addukten gezeigt werden.

In Tabelle F2 sind die in dieser Arbeit mit quantenmechanischen Rechnungen charakterisierten Verbindungen aufgeführt.

Verbindung	Methode und Basissatz der Rechnung				
NSCl ₂ ⁻	B3LYP/6-311+G(3df) CCSD(T)/6-311+G(3df)				
NSC1	B3LYP/6-311+G(3df)				
NSF_2^-	B3LYP/6-31G(d,p) CCSD(T)/6-31G(d,p)				
$NSBr_2^{-[a]}$	B3LYP/6-31G(d,p) CCSD(T)/6-31G(d,p)				
$NSI_2^{-[a]}$	B3LYP/6-31G(d,p) CCSD(T)/6-31G(d,p)				
NSFC1 ⁻	B3LYP/6-31G(d,p)				
NSFBr ^{-[a]}	B3LYP/6-31G(d,p)				
NSFI ^{-[a]}	B3LYP/6-31G(d,p)				
NSCIBr ^{-[a]}	B3LYP/6-31G(d,p)				
NSCII ^{-[a]}	B3LYP/6-31G(d,p)				
NSBrI ^{-[a]}	B3LYP/6-31G(d,p)				
NSH_2^-	B3LYP/6-31G(d,p) CCSD(T)/6-31G(d,p)				
26–34 ^[b]	B3LYP/6-31G(d,p)//PM3				
Ph ₃ PN(SiMe ₃)·ICN (39) ^[c]	HF/6-31G(d,p)				

Tabelle F2Berechnete Verbindungen

^[a] Für H, F und Cl wurde ein 6-31G(d,p) Basissatz verwendet; für I ein ECP46MWB, Br ein ECP28MWB Pseudopotential und ein (5s5p1d)/[3s3p1d]-DZ+P-Valenzbasissatz verwendet.

^[b] Strukturbilder siehe Tabelle F1.

^[C] Ein (5s5p1d)/[3s3p1d] Valenz-Basissatz (311,311,1) wurde für Iod verwendet. Näheres siehe Kapitel Berechnungsmethoden

F1 Thiazylhalogenide (Kapitel C)

Erstmals konnte die Struktur des $NSCl_2^-$ -Anions (Thiazyldichloridanion), dass zu einer neuen Klasse sehr labiler ternärer Anionen des Typs NSX_2^- (X = Halogen) gehört, durch Röntgenbeugung an Einkristallen gelöst werden. Bisher wurde keine Verbindung, die das "nackte" Anion enthält, strukturell charakterisiert.

Bei der theoretischen Untersuchung des Cl⁻-Acceptorverhaltens und der Thermodynamik von NSCl wiesen *ab-initio*-(CCSD(T))- und Dichtefunktional-Rechnungen (B3LYP) auf einen barrierefreien Angriff des Cl⁻-Anions auf das NSCl-Molekül hin, welcher zur Bildung des NSCl₂⁻-Anions führt. Diese Reaktion stellt eine exotherme Lewis-Base-Lewis-Säure-Reaktion dar mit einer berechneten molaren Enthalpie von $\Delta H_{298} = -124.6$ kJ mol⁻¹, die zu einem Ladungstransfer von $Q_{CT} = 0.385e$ (B3LYP/6-311+G(3df)) führt.

Die Auswertung der IR- und Raman-Spektren ergab in Kombination mit den Ergebnissen von quantenmechanischen Rechnungen, dass die Cl-Atome sehr schwach an ein fast als SN^+ -Ion vorliegendes Kation gebunden sind. Die hervorstechenden strukturellen Besonderheiten des $NSCl_2^-$ lassen sich mit einfachen, qualitativen MO- und VB-Betrachtungen erklären:

Die NSCl-Bindung kann als neuartige Vier-Elektronen-Drei-Zentren-Bindung, die die S-Cl- σ -Bindung mit der S-N- π -Bindung verknüpft, aufgefasst werden. Es gibt zwei solcher Vier-Elektronen-Drei-Zentren-Bindungen.

In den umfassenden Studien zu den NSX_2^- -Anionen (X = F, Cl, Br, I) wurde festgestellt:

- durch Cl⁻/F⁻-Austausch ist es möglich das NSF₂⁻ aus NSCl₂⁻ in Lösung zu bilden;
- (ii) die Bildung von NSBrCl⁻ im Festkörper und Lösung und die Bildung von NSBr₂⁻ im Festkörper konnte nachgewiesen werden, wobei diese Verbindungen sehr instabil sind und sehr schnell weiterreagieren;
- (iii) die NSX₂⁻-Salze (X = Br, I) zerfallen unter Bildung von S_4N_4 bzw. polymeren (SN)_x in Abhängigkeit von den Reaktionsbedingungen;

 (iv) die Polarität des Lösemittels besitzt einen großen Einfluss auf den Zerfall von Thiazyldichlorid und die Zerfallsprodukte.

Die quantenmechanischen Rechnungen zu den NSX₂⁻-Anionen ergaben:

- (i) Alle betrachteten Verbindungen sind bezüglich der Bildungsreaktion thermodynamisch stabil.
- (ii) Alle Reaktionen sind exotherm, wobei die Fluor-Spezies erwartungsgemäß die kleinsten freien Reaktionsenthalpien und die Iod-Spezies die größten besitzen.
- (iii) Überraschend niedrig ist im Vergleich zu den Halogenen die freie molare Reaktionsenthalpie für die Bildung von NSH2⁻.
- (iv) Alle NSXY⁻-Verbindungen repräsentieren hoch-polarisierte Moleküle, wobei die Polarisation der S-N- bzw. S-X-Bindung von den F-Verbindungen zu den I-Verbindungen abnimmt. Die Bildungsreaktion (NSX + Y⁻) entspricht einer Donor-Acceptor-(*charge transfer*)-Reaktion, die barrierefrei verläuft.
- (v) Im Einklang mit den berechneten Strukturdaten (lange S-X- bzw. S-Y-Bindungslängen, kurze S-N-Bindungen) zeigt die Elektronendichteverteilung in der NSCI-Ebene viel Elektronendichte zwischen der S-N-Bindung und nur wenig zwischen der S-CI-Bindung. Dies deutet daraufhin, dass die ionischen Verbindungen NSX₂⁻ bzw. NSXY⁻ am besten als NS⁺ X⁻ Y⁻ mit schwachen kovalenten S-X- bzw. S-Y-Wechselwirkungen beschrieben werden sollten (s.o.).
- (vi) Die Bindungssituation in den NSX₂⁻-Verbindungen lässt sich durch zwei Vier-Elektronen-Drei-Zentren-Bindungen mit "geschwächten" S-X- und S-Y- σ -Bindungen und "geschwächten" S-N- π_x - und π_y -Bindungen beschreiben. Die zunehmende Schwächung der Vier-Elektronen-Drei-Zentren-Bindungen ist durch die geringer werdende Überlappung in der Reihe F > Cl > Br > I (F: S-X- σ -S-N- π -Orbital; I: reines S-N- π -Orbital) zu erklären (siehe Abbildung C9).
- (vii) Die N-S-X-Winkel sind vom Halogen wenig beeinflusst und liegen bei 113 bis 115°. Der X-S-X-Winkel nimmt von X = H zu X = Br kontinuierlich von 77.4° auf 112.7° (B3LYP) zu.

Aus den Ergebnissen der Umsetzung des NSCl₂⁻-Anions mit verschiedensten Übergangsmetallkomplexen kann folgendes geschlossen werden:

- die Chloro-Liganden des NSCl₂⁻-Anions sind, wie schon aus den Rechnungen und Strukturdaten in Kapitel C1 hervorgeht, sehr schwach an den Schwefel gebunden, wodurch eine Cl⁻-Abstraktion begünstigt wird;
- (ii) keiner der verwendeten Übergangsmetallkomplexe ist in der Lage, das NSCl₂⁻-Anion ohne Zersetzung zu stabilisieren;
- (iii) die Reaktion mit Übergangsmetallchloriden forciert je nach Reaktionsbedingungen die Zersetzung des NSCl₂⁻-Anions zu NSCl/(NSCl)₃, S₂N₂, S₃N₂²⁻, S₄N₄ und Cl₂.

F2 Pseudohalogenchemie des s-Triazins (Kapitel D)

Bei der Untersuchung des Reaktionsverhaltens der Pseudohalogenverbindungen MX (mit M = K, Na, Ag; X = NNN, OCN, CNO, SCN und SeCN) mit 2,4,6–Trichloro–1,3,5–triazin (Cyanurchlorid) zeigte sich, dass

- (i) nur die Azide und Thiocyanate geeignet sind, das Cyanurchlorid im Sinne einer nucleophilen Substitution anzugreifen.
- (ii) die Bildung der analogen Selenocyanate und Cyanate bzw. der entsprechenden Iso-Verbindungen nicht beobachtet werden konnte.
- (iii) die Isocyanate 35 und 36 nur über die ein- bzw. zweifachsubstituierten Amine, durch Reaktion mit Oxalylchlorid oder Phosgen unter Abspaltung von Salzsäure und Kohlenmonoxid, dargestellt werden können.
- (iv) die Darstellung des Triisocyanatotriazins aus Melamin nicht gelang, da für diese Reaktion elektronenziehende Substituenten am Triazinring nötig sind. Die Verbindungen 26^[60b], 35, und 36 konnten mit Hilfe der Schwingungsspektroskopie, der NMR-Spektroskopie und anhand von Einkristallröntgenstrukturanalysen charakterisiert werden.
- (v) die nucleophile Substitution der verbleibenden Chloratome in 35 und 36 durch Umsetzung mit anderen Pseudohalogeniden (z.B. LiN₃, Na/K-N₃, -NCO, -SCN, -CN) nicht möglich ist, da die Isocyanate durch ihre elektronenschiebenden Eigenschaften den Triazinring deaktivieren und somit eine weitere nucleophile Substitution am Ring verhindern.

Bei der Reaktion von 2,4,6–Triazido–1,3,5–triazin (26) mit Triphenylphosphan in verschiedenen molaren Verhältnissen konnten die Verbindungen 29, 31 und 32 mit Hilfe der Schwingungsspektroskopie, der NMR-Spektroskopie und der Röntgenbeugung eindeutig charakterisiert werden (Gleichung F1). Des Weiteren konnten die Verbindungen 27 und 28, die in Lösung im Gleichgewicht mit 31 und 32 vorliegen, anhand ihrer ³¹P-NMR-Resonanzen nachgewiesen werden. Alle drei Stufen der Reaktion von 2,4,6–Triazido–1,3,5–triazin mit Triphenylphosphan repräsentieren exotherme Reaktionen. Nur für die Verbindungen 27 und 28 kann in Lösung ein Gleichgewicht zwischen dem Tetrazol- und dem Azidisomer gefunden werden.

Die experimentelle Beobachtung des Azid-Tetrazol-Gleichgewichtes 27 a 31 und 28 a 32, im Gegensatz zu 26 a TR1 (ohne PPh₃-Gruppen, Abbildung D1), kann durch die thermodynamische Stabilisierung des Tetrazolisomers nach der Einführung der Triphenylphosphangruppe erklärt werden (Abbildung D5).

Aus den Rechnungen und den Experimenten ergab sich:

- (i) eine relativ große Aktivierungsbarriere für die Cyclisierung von ca. 20 bis 25 kcal mol⁻¹, die mit der ungünstigen elektrostatischen Abstoßung zwischen dem terminalen Stickstoff der Azidgruppe und dem Stickstoffatom im Ring und ebenso durch das Abwinkeln der Azidgruppe erklärt werden kann.
- (ii) dass die Einführung von Triphenylphosphangruppen zu stärker polarisierten C-N-Bindungen im Ring und zu einem Ladungstransfer in das Triazinringsystem führt.
- (iii) der orbitalkontrollierte Ringschluß wird durch einen nicht unerheblichen Ladungstransfer in den Tetrazolring begleitet und stabilisiert so thermodynamisch das Tetrazolisomer. Diese Ladungsumverteilung erklärt die wichtige Rolle der Triphenylphosphangruppen bei der Ringschlussreaktion, da sie als gute Elektronendonatoren gelten.

F3 Pseudohalogenchemie von P-N-Verbindungen (Kapitel E)

Bei der Untersuchung des Reaktionsverhaltens von Trimethylsilyltriphenylphosphanimin mit den Halogen-Pseudohalogenverbindungen ClCN, BrCN und ICN zeigte sich,

- dass es nur f
 ür die Reaktion mit ICN m
 öglich ist das Addukt im Festk
 örper zu stabilisieren;
- (ii) dass das ClCN-Addukt spontan zu Ph₃PNCN und ClSiMe₃ zerfällt;
- (iii) dass das BrCN-Addukt zwar etwas stabiler ist, jedoch auch langsam zu Ph₃PNCN und BrSiMe₃ zerfällt;
- (iv) dass die Zugabe von KF oder eine Temperaturerhöhung zur sofortigen Bildung von Ph₃PNCN führt.

Das ICN-Molekül ist aufgrund der Wechselwirkungen mit dem N-Atom der $Ph_3PNSiMe_3$ -Einheit leicht gewinkelt (ca. 176°). Die VB-Betrachtung der NBO-Analyse ergibt, dass es weder am I- noch am P-Atom zu nennenswerten d-Orbital-Erweiterungen kommt. Bei der Untersuchung der Donor-Acceptor-Wechselwirkungen zeigten sich schwache Wechselwirkungen zwischen den beiden freien Elektronenpaaren (p-AOs) des N-Atoms der Ph₃PNSiMe₃-Einheit mit dem leeren antibindenden σ^* -Orbital des ICN-Fragmentes.

Die Untersuchung des Reaktionsverhaltens verschiedenster Pseudohalogenidverbindungen MX (M = K, Na, Li, Ag; X = N₃, SCN, OCN, SeCN, CNO) mit Hexachlorocyclotriphosphazen in unterschiedlichen Lösungsmitteln zeigte, dass nur die Azid- und Isothiocyanat-Verbindungen gebildet werden. Die Einkristall-Röntgenstrukturanalyse von Hexaisothiocyanatocyclotriphosphazen zeigte, dass der (PN)₃-Ring abgewinkelt ist.

Bei der Reaktion von KN_3 mit Triphenylphosphan, $[PN(Cl)_2]_3$ und Kronenether in peroxidhaltigem THF kristallisierte interessanterweise nicht das erwartete Staudingerprodukt aus, sondern der Kronenetherkomplex $[K([18]krone-6)(N_3)-(OPPh_3)]$. Die Umsetzung mit KOCN, KSCN und KSeCN führte ebenfalls zu den analogen Kronenetherkomplexen.

G Experimenteller Teil

G1 Ausgangsverbindungen und Lösemittel

Die Lösemittel wurden über die Chemikalienausgabe vom Department Chemie der Ludwig-Maximilians-Universität bezogen und nach Literaturvorschrift^[131] gereinigt und getrocknet. Ausgangsverbindungen konnten über den Handel bzw. die Chemikalienausgabe bezogen oder nach Literaturvorschrift hergestellt werden (Tabelle G.1). Zur Bestimmung des Peroxidgehalts wurde der Perex® Test von Merck verwendet.

Substanz	Herkunft	Reinigung/Trocknung
(NSCl) ₃	[132]	
[18]Krone–6	Aldrich	Ölpumpenvakuum
[D1]Chloroform (99.8 %)	Deutero GmbH	
[D6]Benzen (99.98 %)	Deutero GmbH	
[D6]DMSO	Deutero GmbH	
$[S_3N_2Cl]^+Cl^-$	[132]	
1,4,7,10,13,16-	Aldrich	Destillation/
Hexaoxacyclooctadekan		Ölpumpenvakuum
Aceton	Aldrich	Destillation/Molekularsieb (4 Å)
Aceton-d ₆ (99.8 %)	Deutero GmbH	
2-Amino-4,6-	Aldrich	
dichlorotriazin		
Ammoniak	Messer-Griesheim	
Ammoniumchlorid	Department	Ölpumpenvakuum
	Chemie	
Benzen	Aldrich	Destillation/Molekularsieb (4 Å)
Brom	Department	konz. H ₂ SO ₄ / Ausschütteln
	Chemie	
Bromcyan	[133]	Sublimation
CCl ₄	Department	Destillation/P ₂ O ₅
	Chemie	
CH_2Cl_2	Department	Destillation/P ₂ O ₅
	Chemie	
CHCl ₃	Department	Destillation/P ₂ O ₅
	Chemie	
Chlor	Messer-Griesheim	konz. H ₂ SO ₄
Chlorcyan	Airproducts	
Cyanurchlorid	Fluka	Sublimation
2-Chloro-4,6-diamino-	[134]	
1,3,5-triazin		

Tabelle G.1	Ausgangsverb	indungen ui	nd Lösemittel
-------------	--------------	-------------	---------------

Diethylether	Department	Destillation/Molekularsieb (4 Å)
La davian		Sublimation
lodcyan	[133]	Sublimation
Kaliumazid		
Kaliumcyanat	[135]	
Kaliumselenocyanat	[135b]	
Kaliumthiocyanat	Aldrich	
Natriumazid	Fluka	
$NMe_4X (X = Cl, F)$	Aldrich	
Phosgen in Toluol	Fluka	
(20%ig)		
Ph ₃ PNSiMe ₃	[136]	
S_2Cl_2	Fluka	
Schwefel	Department	
	Chemie	
Silberazid	[137]	
Silberfulminat	[137]	
SO ₂	Messer Griesheim	Destillation/CaH ₂
THF	Department	Destillation/Molekularsieb (4 Å)
	Chemie	
Thiophosgen	Aldrich	
Trimethylsilylazid	Aldrich	
Triphenylphosphan	Fluka	
$[Cp_{2}Ti]^{2+}[AsF_{6}]_{2}^{-}$	[138]	
$[CpCr(NO)_2]^+[AsF_6]^-$	Analog Lit. [138]	

G2 Analysenmethoden

G2.1 Elementaranalyse

Zur Mikroanalyse diente der C, H, N-Analysator Elementar Vario EL. Die Bestimmung der Halogene erfolgte nach Schöniger mit der O₂-Kolben-Methode.

G2.2 Schmelzpunktbestimmung

Die Bestimmung der Schmelzpunkte erfolgte an einem Büchi B540 Schmelzpunktgerät und sind unkorrigiert.

G2.3 Massenspektrometrie

Das MS-System bestand aus einem hochauflösenden doppeltfokussierenden Sektorfeldgerät, MStation JMS 700 der Firma Jeol.

G2.4 Infrarotspektroskopie

Die IR-Spektren wurden an einem Nicolet 520 FT-IR und einem Perkin Elmer 983 G IR-Spektrometer durchgeführt. Die Messungen erfolgten bei Raumtemperatur. Die Proben wurden als KBr-Preßlinge oder als Nujol-Verreibung auf KBr- oder CsI-Platten vermessen. Luftempfindliche Proben wurden in der Dry-Box präpariert.

G2.5 Raman-Spektroskopie

Das Gerät Spectrum 2000R NIR FT-Raman der Firma Perkin Elmer diente zur Aufnahme der Raman-Spektren. Zur Anregung wurde ein Nd:YAG-Laser (1064 nm) mit einer Leistung von maximal 750 mW verwendet. Luftempfindliche Proben wurden in der Dry-Box in Probenröhrchen mit 4 mm Durchmesser abgefüllt und abgeschmolzen oder direkt im Reaktionskolben gemessen. Einzelne Kristalle wurden in abgeschmolzenen Schmelzpunktkapillaren vermessen. Die Intensitäten der Raman-Daten wurden auf den Wert 100 für den intensivsten *peak* normiert.

G2.6 NMR-Spektroskopie

Die Kernresonanzspektren wurden an 400 und 270 MHz Geräten der Firma Jeol gemessen (EX400 Delta, EX 400 Eclipse und GSX270 Delta/Eclipse). NMR Verschiebungen mit positivem Vorzeichen entsprechen einer Tieffeld- oder Hochfrequenzverschiebung, solche mit einem negativem Vorzeichen einer Hochfeldverschiebung. Bei einem Vergleich der Stickstoffverschiebungen mit Literaturdaten aus älteren Veröffentlichungen ist auf die unterschiedlichen Standards und Vorzeichen bei der Verschiebung zu achten. Als Standard dienten die jeweils verwendeten teildeuterierten Lösungsmittel. Als externer Standard für die ¹⁴N- und ¹⁵N-Kernresonanzspektroskopie wurde reines Nitromethan ($\delta = 0.00$), für die ³¹P-NMR-Messungen Phosphorsäure (85 %, $\delta = 0.00$) und für die ¹⁹F-NMR-Messungen CFCl₃ ($\delta = 0.00$) verwendet.

Die MAS-NMR-Spektren wurden an einem DSX Avance Fourier-Transform Spektrometer mit einem supraleitenden Cryomagneten durchgeführt, der auf einer Feldstärke von 11.2 T betrieben wird. Dies entspricht einer Resonanzfrequenz von 500 MHz für Protonen. Das Gerät arbeitet mit einem Breitbandsender (6 MHz – 243 MHz) und einem Protonensender (470 MHz – 500 MHz), die jeweils für eine Leistung von 1 kW ausgelegt sind. Für Trippelresonanzanwendungen steht zusätzlich ein weiterer Breitbandsender mit einer Leistung von 300 W zur Verfügung. Das Empfangssystem erlaubt die Digitalisierung der gemessenen Daten mit bis zu 20 MHz Sampling Rate, so dass Spektrenbreiten bis zu 10 MHz simultan erfaßt werden können.

4 mm MAS	Frequenzbereich	Temperaturbereich
Trippelresonanzprobenkopf	$^{15}N - ^{31}P$	150 K – 420 K

G2.7 Berechnungsmethoden

Die *ab-initio-*, DFT(B3LYP)- und semi-empirischen Rechnungen wurden mit dem Programm Paket Gaussian 94/98^[139,140] durchgeführt.

Für Wasserstoff, Fluor, Kohlenstoff, Stickstoff und Phosphor wurde ein Standard-6-31G(d,p)-Basissatz verwendet. Für Chlor, Brom und Iod wurden quasi-relativistische Pseudopotentiale (I: ECP46MWB, Br: ECP28MWB, Cl: ECP10MWB))^[50] und ein (5s5p1d)/[3s3p1d]-DZ+P-Valenzbasissatz verwendet.^[51]

Berechnungen auf DFT-Niveau wurden unter Benutzung der Hybridmethode B3LYP, welche ein Gemisch eines Hartree-Fock-Austausch und einer DFT-Austauschkorrelation darstellt, durchgeführt. Es wurden Becke's drei Parameterfunktionale verwendet, in denen die nicht-lokale Korrelation durch das LYP-Funktional (Lee-, Yang-, Parr-Korrelationsfunktional) beschrieben wird. Eine kurze Definition der B3LYP-Methode ist in Literatur [141] beschrieben.

Die Strukturen wurden voll optimiert. Alle Schwingungsfrequenzen sind unskaliert. Atomare Ladungen, natürliche Bindungsorbitale (NBO) und die intramolekularen Donor-Acceptor-Energien wurden durch NBO-Analyse bestimmt. Alle Dissoziationsund Bildungsenergien wurden die Nullpunktsum schwingungsenergien korrigiert. Thermische Korrekturen (Arbeits-, Rotations-, Translations- und Vibrationsterm) wurden durchgeführt, um die freien molekularen Enthalpien der Dissoziations- und Aktivierungsbarrieren bei 298.15 K und 1 atm abzuschätzen.

ICN-Addukt: Rechnungen wurden auf Hartree-Fock SCF-Level durchgeführt. Für alle Atome wurde ein 6-31G(d,p) Standard-Basissatz angewandt. Eine Ausnahme bildet das Iod, für welches ein angepasstes quasirelativistisches-effektives Mehrelektronen-Kern-Potential mit der folgenden Elektronenkonfiguration benutzt wurde: I: [Kr]d¹⁰. Ein (5s5p1d)/[3s3p1d] Valenz-Basissatz (311,311,1) wurde für Iod verwendet. Das Pseudopotential und der korrespondierende Basissatz stammen von der Stuttgart-Gruppe.^[142]

Die NBO-Populationsanalyse^[41,38,143] wurde für die Röntgenstrukturdaten von **39** durchgeführt, um die Bindung und Hybridisierung in dieser Verbindung (*single point* auf HF/6-31G(d,p) Level) zu untersuchen.

G2.8 Röntgenstrukturanalyse

Zur Aufnahme der Röntgenstrukturdaten wurde ein Siemens SMART Area-detector, oder ein STOE-IPDS Flächendetektor, der mit einer Kühlvorrichtung von OXFORD CRYOSTREAM ausgestattet ist, verwendet. Die Strukturlösung wurde mit dem Programm SHELXS der Firma Sheldrick durchgeführt (Zu den Versionsnummern siehe Anhang). Detaillierte kristallographische Daten befinden sich im jeweiligen Kapitel oder im Anhang. Die Atomkoordinaten und Auslenkungsparameter aller neuen Röntgenstrukturanalysen sind im Anhang zusammengefasst.

G3 Arbeitstechnik

Alle Experimente wurden, soweit nicht anders angegeben, unter Argonatmosphäre und mit Hilfe der Schlenktechnik durchgeführt. Benutzte Glasgeräte wurden mindestens dreimal mit einem Heißluftgebläse im Hochvakuum ausgeheizt und in einem Trockenschrank bei 120 °C gelagert. Das Ab- und Umfüllen sehr feuchtigkeitsempfindlicher Substanzen (z.B. Thiazylhalogenide (Kapitel C)) wurde in einer Drybox unter Inertgasatmosphäre durchgeführt.

Für die Chlorierungen und die Arbeiten in SO₂ als Lösemittel stand eine Monellapparatur zur Verfügung. Die Arbeiten mit SO₂ wurden in Zweikugelkolben (je ca. 20 mL), die einem Druck von ca. 6-8 bar standhalten, durchgeführt. Diese über jeweils einen Young-Hahn[®] (PTFE) zugänglichen Kolben sind über Fritten (D2-D4) miteinander verbunden, damit anfallende Feststoffe nach der Reaktion, ohne das Gefäß zu öffnen, abgetrennt werden können. Die Verbindungen zur Monell-Anlage werden mit Hilfe von Swagelok[®]-Schraubverbindungen mit Teflon[®]-Dichtungen erzielt. Die Reaktionsprodukte können dann in der Drybox zur weiteren Verwendung abgefüllt werden.

Achtung: Alle während der Arbeit verwendeten oder als Produkte auftretenden kovalenten Fulminate und Azide (z. B. Silbersalze), sowie S₄N₄ sind Explosivstoffe und sollten dementsprechend mit Vorsicht gehandhabt werden. 2,4,6–Triazido–1,3,5–triazin ist ein hochbrisanter Explosivstoff. Der explosive Charakter steigt noch mit größerer Reinheit und Kristallgröße. Zur Darstellung und Handhabung sollte nur PE-Material verwendet werden. Das Tragen von Schutzbekleidung wie Lederhandschuhe, -jacke, Hörschutz und Gesichtsschutz sollte selbstverständlich sein.

G4 Reaktionen

G4.1 Thiazyldichlorid

G4.1.1 $[Ph_4P]^+[NSCl_2]^-(7)$

a) 0.5 g (2.04 mmol) (NSCl)₃ in CH₂Cl₂ (für 2 Minuten auf ca. 50°C erhitzt, grüne Lösung) werden innerhalb von 15 Minuten zu einer Mischung von 2.29 g (6.1 mmol, 3 equiv.) $[Ph_4P]^+Cl^-$ in CH₂Cl₂ gegeben. Die Lösung wird 2 h bei Raumtemperatur gerührt. Das Lösemittel kann entweder langsam durch Destillation bei Raumtemperatur entfernt werden oder das Produkt wird durch Zugabe von Hexan, Heptan oder Benzol gefällt.

b) 0.5 g (2.04 mmol) (NSCl)₃ in CH_2Cl_2 (für 2 Minuten auf ca. 50°C erhitzt) werden innerhalb von 15 Minuten zu einer Mischung von 2.29 g (6.1 mmol, 3 equiv.) $[Ph_4P]^+Cl^-$ in 20 mL Benzen gegeben. Die dunkelgrüne Reaktionslösung wird bei Raumtemperatur für 24 h gerührt. Die Farbe wechselt von grün über orange zu gelb. Die Reaktionslösung wird filtriert und der gelbe Feststoff im Ölpumpenvakuum für 20 min getrocknet.

Ausbeute: 2.71 g (5.9 mmol, 99 %) eines gelben Feststoffs. – $C_{24}H_{20}Cl_2NPS$ (456.38) – Elementaranalyse: ber. C 63.2, H 4.4, N 3.1, Cl 15.5, S 7.0 %; gef. C 63.0, H 4.5, N 2.9, Cl 15.6, S 6.6 %. – Zersetzungspunkt: 140 °C. – IR-Spektrum (Nujol, CsI, RT): $\tilde{v} = 1338 \text{ cm}^{-1}$ (s), 302 (m), 293 (m), 220 (m). – Raman-Spektrum (300 mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}(60)$, 305 (15), 295 (20), 223 (20), 161 (20). – ¹⁴N-NMR-Spektrum (CD₂Cl₂, 28.9 MHz, RT): $\delta = 153$ (s, $\Delta v^{1/2} = 140$ Hz). In den Schwingungsspektren sind der Übersichthalber nur die Banden des Anions aufgeführt.

G4.1.2 $[Ph_3BzP]^+ [NSCl_2]^- (8)$

Zu einer Lösung von 0.954 g (2.45 mmol) $[Ph_3BzP]^+Cl^-$ in 30 mL wird bei Raumtemperatur eine Lösung von 0.2 g (0.82 mmol) (NSCl)₃ in 15 mL CH₂Cl₂ unter Rühren zugetropft. Die zunächst grüne Lösung schlägt nach einigen Minuten in ein intensives Orange um. Die Reaktionsmischung wird für mindestens 10 h gerührt. Das Lösemittel wird anschließend langsam abdestilliert oder das Produkt wird durch Zugabe von Benzol (40 mL) ausgefällt und über eine Schlenkfritte (G4) abgetrennt. Ausbeute: 1.129 g (2.4 mmol, 98%) eines orange-gelben, hydrolyseempfindlichen Feststoffes. – C₂₅H₂₂Cl₂NPS (470.40) – Elementaranalyse: ber. C 63.8, H 4.7, N 3.0, Cl 15.1, S 6.8 %; gef. C 64.0, H 4.8, N 2.9, S 6.7 %. – Zersetzungspunkt: 135-140 °C. – IR-Spektrum (Nujol, CsI, RT): $\tilde{v} = 1338 \text{ cm}^{-1}$ (s), 302 (m), 293 (m), 220 (m). – Raman-Spektrum (300 mW, RT): $\tilde{v} = 1347 \text{ cm}^{-1}$ (70), 305 (15), 295 (20), 223 (20), 161 (20). – ¹⁴N-NMR-Spektrum ([D2]Methylenchlorid, 28.9 MHz, RT): $\delta =$ 153 (s, $\Delta v^{1/2} = 140$ Hz). In den Schwingungsspektren sind der Übersichthalber nur die Banden des Anions aufgeführt.

G4.1.3 $[(Ph_3PN)_2SCl]^+[NSCl_2]^-(9)$

Eine Lösung von 0.43 g (1.2 mmol) $Ph_3PNSiMe_3$ in CCl_4 wird innerhalb von 30 Minuten zu einer grünen Lösung von 0.3 g (1.2 mmol, 1 equiv.) (NSCl)₃ in CCl_4 (für 2 Minuten auf ca. 50 °C erhitzt) gegeben. Die Farbe wechselt von dunkelgrün zu braun. Die ölige, braune Reaktionslösung wird 12 h bei Raumtemperatur gerührt. Der braune Feststoff wird filtriert und mit Benzen gewaschen. Aus der klaren grünen Benzenlösung lassen sich farblose Einkristalle gewinnen.

Ausbeute: 0.088 g (0.12 mmol, 10 %). – $C_{36}H_{30}Cl_3N_3P_2S_2$ (737.09). – Raman-Spektrum (300 mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}$ (100), 308 (22), 293 (20), 222 (40), 160 (30). – ³¹P-NMR-Spektrum ([D6]Benzol, 162 MHz, RT): $\delta = 26$ (s). – ¹⁴N-NMR-Spektrum ([D6]Benzol, 28.9 MHz, RT): $\delta = 153$ (s, $\Delta v^{1/2} = 140$ Hz).

G4.1.4 $[Me_4N]^+[NSCl_2]^-$

Eine Lösung von 0.5 g (2.04 mmol) (NSCl)₃ in 15 mL C_6H_6 werden innerhalb von 30 Minuten zu einer farblosen Suspension von 0.56 g (5.1 mmol) NMe₄Cl in 15 mL C_6H_6 gegeben. Alternative Lösemittel: CCl₄ und CH₂Cl₂. Die Reaktionsmischung wird für 24 h bei Raumtemperatur gerührt. Anschließend wird der anfallende gelbe Feststoff filtriert und im Ölpumpenvakuum 1 h getrocknet. Das Produkt ist ein luft und feuchtigkeitsempfindlicher. blassgelber Feststoff.

Ausbeute: 0.927 g (4.85 mmol, 95 %). – $C_4H_{12}Cl_2N_2S$ (191.13) – Elementaranalyse: ber. C 25.1, H 6.3, N 14.7 %; gef. C 25.1, H 6.5, N 14.6 %. Schmelzbereich: 90–142 °C. – IR-Spektrum (Nujol, CsI-Platten, RT): $\tilde{v} = 1355$ cm⁻¹ (vs), 262 (m), 247 (m), 217 (m). – Raman-Spektrum (300 mW, RT): $\tilde{v} = 1354$ cm⁻¹ (100), 278 (10), 241 (10), 211 (15), 117 (15). $-{}^{14}$ N-NMR-Spektrum ([D2]Methylenchlorid, 28.9 MHz, RT): $\delta = 153$ (s, $\Delta v^{1/2} = 140$ Hz).

G4.2 (NSCl)₃ (3)

Synthese siehe Tabelle G1.

(NSCl)₃ (244.68) – Elementaranalyse: ber. N 17.2 S 39.3 Cl 43.5 %; gef. N 17.5 S 38.3 Cl 43.7 %. – IR-Spektrum (Nujol, CsI, RT): $\tilde{v} = 1019 \text{ cm}^{-1}$ (s, v SN), 700 (m, v SN), 643 (m, v SN), 516 (m, v SCl), 388 (m, v SCl), 314 (w). – Raman-Spektrum (100mW, RT): $\tilde{v} = 701 \text{ cm}^{-1}$ (5, v SN), 692 (5, v SN), 619 (10, br, v SN), 486 (15, v SCl), 433 (15, v SCl), 377 (55, v SCl), 320 (34), 193 (75), 180 (60), 109 (30).^[54]

G4.3 $[N_2S_3Cl]^+Cl^-(5)$

Zur Synthese siehe Tabelle G1.

Raman-Spektrum (100mW, RT): $\tilde{v} = 1015 \text{ cm}^{-1}$ (20, v SN), 932 (10, v SN), 728 (20), 580 (15, δ NSN), 458 (5), 404 (58, δ NSN), 369 (35, δ NSN), 350 (40), 265 (73, v SS), 171 (72), 136 (100).

G4.4 Umkristallisation von [PPh₄]⁺[NSCl₂]⁻ in SO₂:

In einem Zweikugelkolben werden 200 mg $[PPh_4]^+[NSCl_2]^-$ vorgelegt und in 8 mL einkondensiertem SO₂ gelöst. Durch langsame Destillation des SO₂ erhält man gelbe, nadelförmige Kristalle von 1,2,4,6,3,5,7-Tetrathiaazacycloheptatrieniumchlorid. – Raman-Spektrum (400mW, RT): $\tilde{v} = 1172 \text{ cm}^{-1}$ (15), 1143 (5), 1002 (25), 605 (43), 567(50), 446 (100), 249 (75), 208 (55), 150 (12).^[47]

G4.5 Umsetzung von [NSCl₂]⁻ mit Fluorid

G4.5.1 Reaktion von $[PPh_4]^+[NSCl_2]^-$ mit Tetramethylammoniumfluorid

bei 0°C:

0.19 g (1.98 mmol, 97%) $[NMe_4]^+F^-$ werden in 10 mL CH_2Cl_2 gelöst, auf 0°C gekühlt und mit 0.3 g (0.66 mmol) $[PPh_4]^+[NSCl_2]^-$, gelöst in 7 mL CH_2Cl_2 , versetzt, wobei sich die Lösung orange färbt. Das ¹⁹F-NMR-Spektrum zeigt die Bildung von HF und Substitution des Chlors durch Fluor am Methylenchlorid.

¹⁹F-NMR-Spektrum (CH₂Cl₂, 94.1 MHz, RT): δ = 101 (s), -155 (d, *J* = 101.7 Hz, HF₂⁻), -170 (t, *J* = 46.2 Hz, CH₂ClF).

bei –78°C:

0.19 g (1.98 mmol, 97%) $[NMe_4]^+F^-$ werden in 10 mL CH₂Cl₂ gelöst, im Trockeneisbad auf –78°C gekühlt und mit 0.3 g (0.66 mmol) $[PPh_4]^+[NSCl_2]^-$, gelöst in 7 mL CH₂Cl₂, versetzt, wobei sich die Lösung orange färbt. Es werden mehrere NMR-Spektren zwischen –80 und 25 °C aufgenommen.

¹⁹F-NMR-Spektrum (CH₂Cl₂, 94.1 MHz, -60°C): $\delta = 160$ (s, NSF₂⁻), 100 (s), 83 (s), 79 (s), -155 (d, ¹J = 101.7 Hz, HF₂⁻), -170 (t, ²J = 46.2 Hz, CH₂ClF); bei Messtemperaturen ab -40°C verschwindet das Signal bei 160 ; der Rest des Spektrums bleibt unverändert.

G4.5.2 Reaktion von [PPh₄]⁺[NSCl₂]⁻ mit Kaliumfluorid

0.23 g (4 mmol) KF werden in 5 mL CH_2Cl_2 suspendiert und mit 0.3 g (0.66 mmol) $[PPh_4]^+[NSCl_2]^-$ gelöst in 3 mL CH_2Cl_2 bei 0°C versetzt. Die gelbe Suspension lässt man unter Rühren auf RT erwärmen und für 60 Std. rühren. Da nach NMR-Analyse keine Reaktion eintrat, wird eine Spatelspitze [18]Krone–6–ether zugesetzt und über Nacht gerührt. Das ¹⁹F-NMR-Spektrum (CH₂Cl₂, 94.1 MHz, RT) zeigt diverse Signale unterschiedlicher Multiplizität im Bereich von 75 bis 55, diese Signale liegen alle im Bereich von S-F-Verbindungen. Das Signal für NSF₂⁻ kann nicht beobachtet werden.

G4.5.3 Reaktion von $[PPh_4]^+[NSCl_2]^-$ mit Silberfluorid

0.25 g (1.98 mmol) AgF werden bei 0°C in 10 mL Methylenchlorid vorgelegt und anschließend werden 0.3 g (0.66 mmol) $[PPh_4]^+[NSCl_2]^-$ gelöst in 10 mL Methylenchlorid zugegeben.

Nach 1 h: ¹⁹F-NMR-Spektrum (CH₂Cl₂, 94.1 MHz, RT): $\delta = 75$ (s), -112 (s). Anschließend lässt man bei RT 24 h rühren. – ¹⁹F-NMR-Spektrum (CH₂Cl₂, 94.1 MHz, RT): $\delta = 72$ (mult.), 44 (s), -131 (s), -143 (s, H₂CF₂), -170 (t, ²J = 46.2 Hz, CH₂ClF). Keine Bildung von NSF₂⁻. G4.5.4 Reaktion von [NMe₄]⁺[SNCl₂]⁻ mit Tetramethylammoniumfluorid und Kaliumfluorid

0.190 g (1.98 mmol, 97%) $[NMe_4]^+F^-$ und 1.16 g (20 mmol) KF werden in 10 mL CH_2Cl_2 für 2 h gerührt. Anschließend gibt man eine Suspension von 0.126 g (0.66mmol) $[NMe_4]^+[NSCl_2^-]$ in 10 mL CH_2Cl_2 hinzu. Es entsteht eine orangebraune Suspension. Im ¹⁹F-NMR-Spektrum zeigte sich kein dem NSF₂-Anion zugehöriges Signal.

G4.6 Umsetzung von [PPh₄]⁺[NSCl₂]⁻ mit Bromid

G4.6.1 Reaktion mit Tetrapropylammoniumbromid

Eine gelbe Lösung von 0.5 g (1.10 mmol) $[PPh_4]^+[NSCl_2]^-$ in 10 mL CH_2Cl_2 wird unter Rühren zu einer gelblichen Lösung von 0.29 g (1.10 mmol) $[Pr_4N]^+Br^-$ in 10 mL CH_2Cl_2 gegeben. Die Lösung färbt sich orange. Die Reaktionsmischung wird über Nacht gerührt, filtriert und das Lösemittel langsam entfernt. Bei dem isolierten orangen Feststoff handelt es sich um S_4N_4 .

Raman-Spektrum (oranger Feststoff (S₄N₄), 350 mW, RT): $\tilde{v} = 721 \text{ cm}^{-1}$ (18), 559 (15), 291 (28), 220 (42), 199 (43), 162 (100). $-{}^{14}$ N NMR (CH₂Cl₂, 28.9 MHz, RT): $\delta = 153$ (s, $\Delta v^{1/2} = 180$ Hz, NSCl₂⁻), -257 (s, $\Delta v^{1/2} = 214$ Hz, S₄N₄), -315 (s, [Pr₄N]⁺).

G4.6.2 Reaktion mit Tetraphenylphosphoniumbromid

a) Zu einer Lösung von 0.3 g (0.66 mmol) $[PPh_4]^+[NSCl_2]^-$ in 15 mL CH_2Cl_2 werden bei 0 °C 0.28 g (.66 mmol) $[PPh_4]^+Br^-$ in 10 mL CH_2Cl_2 gegeben. Die gelbe Farbe der Lösung wird etwas intensiver. Das Lösemitte. Wird langsam durch einkondensieren in eine Kühlfalle entfernt.

Raman-Spektroskopie (200 mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}$ (10), 1328 (4), 1315 (2), 293 (3), 281 (10), 258 (20), 251 (20), 214 (8), 198 (20), 162 (45) ohne *peaks* von [PPh₄]⁺. - ¹⁴N NMR (CH₂Cl₂, 28.9 MHz, RT): $\delta = 153$ (s, $\Delta v^{1/2} = 180 \text{ Hz}$, NSCl₂⁻), -58 (s, $\Delta v^{1/2} = 220 \text{ Hz}$), -257 (s, $\Delta v^{1/2} = 214 \text{ Hz}$, S₄N₄).

b) Zu einer Lösung von 0.3 g (0.66 mmol) $[PPh_4]^+[NSCl_2]^-$ in 15 mL CH_2Cl_2 werden bei 0 °C 0.84 g (1.98 mmol) $[PPh_4]^+Br^-$ in 20 mL CH_2Cl_2 gegeben. Die Lösung färbt sich intensiv gelb und wird nach ca. 2 min orange. Die Lösung wird auf ca 1/3 eingeengt und bei -15 °C über Nacht stehengelassen. Der farblose Feststoff ([PPh₄]⁺Br⁻ und Cl⁻) wird abgetrennt und das Lösemittel entfernt. Es wird ein gelboranger Feststoff isoliert.

Raman-Spektroskopie (200 mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}$ (8, v NSCl₂⁻), 1328 (2), 289 (25), 262 (21), 255 (26), 247 (22), 196 (23), 162 (22) ohne *peaks* von [PPh₄]⁺. – ¹⁴N NMR (CH₂Cl₂, 28.9 MHz, RT): $\delta = 163$ (s, $\Delta v^{1/2} = 200$ Hz, möglicherweise NSClBr⁻), –58 (s, $\Delta v^{1/2} = 220$ Hz, intensiver), –129 (s, $\Delta v^{1/2} = 220$ Hz).

G4.7 Umsetzung von [PPh₄]⁺[NSCl₂]⁻ mit Iodid

Zu einer Lösung von 0.5 g (1.096 mmol) $[PPh_4]^+[NSCl_2]^-$ in ca. 30 mL CH₂Cl₂ werden 0.343 g (1.096 mmol) $[Pr_4N]^+\Gamma$ gegeben. Die rot-braune Lösung wird bei Raumtemperatur gerührt (je nach Versuch: 5 min, 30 min, 1 h und 4 h). Die Lösung wird zur Kristallisation bei –15 °C gelagert. Der braun–schwarze polymere Feststoff (vermutlich (SN)_x) wird von der Lösung abgetrennt. Aus der Lösung erhaltene Kristalle wurden als S₄N₄ und $[PPh_4]^+[I_3]^-$ identifiziert.

Raman-Spektrum (orange Kristalle, S₄N₄) (200 mW): $\tilde{v} = 720 \text{ cm}^{-1}$ (52), 560 (67), 249 (12), 217 (93), 199 (100), 98 (6). – Raman-Spektrum (roter Kristall, 300 mW): $\tilde{v} = 3064 \text{ cm}^{-1}$ (22), 1587 (43), 1482 (4), 1184 (8), 1109 (8), 1099 (22), 1025 (34), 1000 (100), 680 (21), 615 (11), 527 (3). – ¹⁴N-NMR-Spektrum (CH₂Cl₂, 28.9 MHz, RT): δ = -258 (s, Δv^{1/2} = 210 Hz, S₄N₄), -315 (s, [Pr₄N]⁺).

G4.8 Umsetzungen von (NSCl)₃ mit Tetraphenylphosphoniumbromid

Der besseren Übersicht wegen wurden nur neu entstehende Banden und die des $NSCl_2^{-}$ -Ions in der Datensammlung angegeben.

a) Zu einer Lösung von 2.572 g (6.13 mmol) $[Ph_4P]^+Br^-$ in 6 mL CH_2Cl_2 wird unter Rühren eine gelbe Lösung von 0.5 g (2.04 mmol) (NSCl)₃ in 6 mL CH_2Cl_2 getropft. Die Lösung färbt sich zunächst tiefgrün, dann ockerbraun. Nach 30 min wird das Lösemittel entfernt. Von dem erhaltenen gelben Feststoff wird ein Raman-Spektrum gemessen. Der gelbe Feststoff wird wieder in 10 mL CH_2Cl_2 gelöst und weitere 30 min gerührt. Nach Entfernen des Lösemittels wird von dem erhaltenen gelben Feststoff erneut ein Raman-Spektrum aufgenommen.

Raman-Spektrum (nach 30 min, 300 mW, RT): $\tilde{v} = 1342 \text{ cm}^{-1}$ (16), 720 (11), 559 (9), 348 (18), 264 cm⁻¹ (100), 219 (36), 199 (39), 163 (23) – Raman-Spektrum (nach

60 min, 400 mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}$ (16), 720 (24), 559 (23), 348 (19), 264 (100), 217 (66), 199 (68), 163 (28).

b) Die Reaktion wird wie oben beschrieben durchgeführt. Die Eintropfstelle färbt sich dunkelbraun und hellt dann auf. Nach 2 min beginnt ein heller Niederschlag auszufallen (sehr wenig). Die Lösung färbt sich rot-orange, der Niederschlag löst sich wieder auf. Nach 5 min wird das Lösemittel entfernt.

Raman-Spektrum (350 mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}$ (17), 1328 (7), 720 (9), 559 (13), 348 (9), 215 (24), 198 (30), 162 (100);

c) Die Reaktion wird bei 0° C durchgeführt. Die Eintropfstelle f\u00e4rbt sich braun. Nach vollst\u00e4ndiger Zugabe liegt eine dunkelorange L\u00f6sung \u00fcber wenig Niederschlag vor. Das L\u00f6semittel wird nach 2 min entfernt; man erh\u00e4lt einen gelben Feststoff.

Raman-Spektrum (650 mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}$ (30), 1328 (13), 1315 (4), 720 (10), 559 (13), 348 (8), 216 (13), 198 (31), 162 (100).

G4.9 Umsetzung von (NSCl)₃ mit Iodid

G4.9.1 Reaktion mit Tetrapropylammoniumiodid

1.14 g (3.67 mmol) $[Pr_4N]^+\Gamma$ werden in 10 mL C₆H₆ aufgeschlämmt und mit einer Lösung von 0.3 g (1.2 mmol) (NSCl)₃ in 10 mL C₆H₆ versetzt; die Reaktionslösung färbt sich dabei sofort tiefgrün. Nach ca. zwei Minuten entsteht eine dunkelrote, zweiphasige Lösung, die über Nacht gerührt wird. Die leichtere Phase wird abgetrennt und im Vakuum eingeengt, wobei ein weißer, feinkristalliner Niederschlag entsteht. Der Rückstand wird mit C₆H₆ gewaschen.

¹⁴N-NMR-Spektrum (Benzol, 28.9 MHz, RT): $\delta = -256$ (s, $\Delta v^{1/2} = 162$ Hz, (NSCl)₃), -316 (s, Pr₄N⁺); der Rückstand enthält ausschließlich Tetrapropylammoniumsalz. Die dunkelrote Lösung enthält nach den Raman- und ¹⁴N-NMR-daten vor allem S₄N₄, I₂ und I₃⁻.

G4.9.2 Reaktion mit Tetraphenylphosphoniumiodid

a) 0.3 g (1.23 mmol) (NSCl)₃ werden in 5 mL CH₂Cl₂ gelöst und anschließend langsam 1.71 g (3.67 mmol) $[Ph_4P]^+\Gamma^-$ in 10 mL CH₂Cl₂ hinzugetropft. Die Lösung färbt sich sofort tiefgrün (NSCl), nach längerem Rühren schlägt die Farbe nach rotbraun (I₂/I₃⁻) um.

¹⁴N-NMR-Spektrum ([D6]Benzol/CH₂Cl₂, 28.9 MHz, RT): $\delta = -256$ (s, S₄N₄), -47 (s, br, möglicherweise S₂N₂, sehr schwaches Signal).

b) Zu einer farblosen Lösung von 2.856 g (6.13 mmol) $[Ph_4P]^+\Gamma$ in 6 mL CH_2Cl_2 wird unter Rühren eine gelbe Lösung von 0.5 g (2.04 mmol) (NSCl)₃ in 6 mL CH_2Cl_2 zugetropft. Der Ansatz färbt sich zunächst intensiv grün. Beim weiteren Zutropfen färbt sich die Lösung dunkelbraun. Nach 5 min wird das Lösemittel entfernt. Man erhält einen grauen Feststoff (I_2 und (SN)_x). Der Feststoff wird wieder in 10 mL CH_2Cl_2 aufgenommen. Man erhält eine dunkle Suspension. Filtration über eine Fritte ergibt eine dunkelrote Lösung (I_2/I_3^-) und einen grau-schwarzen Feststoff ((SN)_x und etwas I_2).

Raman-Spektrum (300 mW, RT): $\tilde{v} = 719$ cm⁻¹ (12), 559 (16), 348 (9), 213 (41), 198 (39); alle S₄N₄. – ¹⁴N-NMR-Spektrum (CH₂Cl₂, 28.9 MHz, RT): $\delta = -47.0$ (S₂N₂), –258 (S₄N₄).

G4.10 Reaktion von (NSCl)₃ mit NbCl₅

bei Raumtemperatur:

1 g (3.67 mmol) NbCl₅ wird in 25 mL CH₂Cl₂ suspendiert und mit 0.3 g (1.23 mmol) (NSCl)₃ in 10 mL CH₂Cl₂ versetzt und anschließend über Nacht gerührt. Die zuerst gelbe Suspension wird mit der Zugabe sofort tiefgrün, wobei das NbCl₅ langsam in Lösung geht; später erfolgt Farbumschlag zu gelb. Nun gibt man 1.37 g (3.67 mol) $[Ph_4P]^+Cl^-$ gelöst in 10 mL CH₂Cl₂ hinzu und rührt für 45 min, dabei verfärbt sich die Lösung tiefrot. Ein Teil der Lösung wird sofort bis zur Trockne eingeengt, der Rest über Nacht gerührt.

Raman-Spektrum (300mW, RT): $\tilde{v} = 850 \text{ cm}^{-1}$, 505, 377 (v NbCl), 347 (v NbCl), 178 (δ NbCl). Die *peaks* bei 805 und 505 cm⁻¹ stammen vermutlich aus einem Folgeprodukt von NbCl₅-NSCl durch Chlorabspaltung.^[52b] – ¹⁴N-NMR-Spektrum ([D2]Dichlormethan, 28.9 MHz, RT): $\delta = 330$ (s, $\Delta v^{1/2} = 67$ Hz, NSCl), –259 (s, $\Delta v^{1/2} = 191$ Hz, (NSCl)₃).

bei –78°C:

0.332 g (1.23 mmol) NbCl₅ werden in 12 mL CH₂Cl₂ aufgeschlämmt und bei -78° C mit 0.1 g (0.41 mmol) (NSCl)₃ in 5 mL CH₂Cl₂ versetzt.

Raman (500mW, RT): $\tilde{v} = 1056 \text{ cm}^{-1}$ (8), 1038 (12), 917 (8), 798 (12), 627 (58), 618 (5), 426 (80), 370 (100), 300 (8), 240 (8), 189 (80), 167 (22), 148 (35), 141 (35), 102 (15). – ¹⁴N-NMR-Spektrum (CH₂Cl₂, 28.9 MHz, RT): keine Signale.

G4.11 Reaktion von NSCl₂⁻ mit NbCl₅

bei Raumtemperatur:

0.19 g (0.7 mmol) NbCl₅ werden in 10 mL CH₂Cl₂ suspendiert und mit 0.3 g (0.66 mmol) (PPh₄)⁺ NSCl₂⁻ gelöst in 10 mL CH₂Cl₂ versetzt. Die hellrote Lösung wird über Nacht gerührt.

Raman (650 mW, RT): alle Signale von $[Ph_4P]^+$, zusätzlich: $\tilde{v} = 377 \text{ cm}^{-1}$ (100, v NbCl), 347 (10, v NbCl), 178 (40, δ NbCl). – ¹⁴N NMR (CH₂Cl₂, 28.9 MHz, RT) $\delta =$ 330 (s, $\Delta v^{1/2} = 140$ Hz, NSCl). Die *peaks* bei 850 und 505 cm⁻¹ stammen laut Literatur vermutlich aus einem Folgeprodukt von NbCl₅-NSCl durch Chlorabspaltung (S₂N₂).^[52b] Die anderen Signale sind dem NbCl₆⁻-Anion zuzuordnen.

bei –78°C:

0.19 g (0.7 mmol) NbCl₅ werden in 5 mL CH_2Cl_2 suspendiert, auf -78°C gekühlt und mit 0.3 g (0.66 mmol) (PPh₄)⁺ NSCl₂⁻ gelöst in 5 mL CH_2Cl_2 versetzt. Von der roten Lösung wird eine Serie von Tieftemperatur-NMR-Spektren aufgezeichnet. Beim Erwärmen wird die Lösung erst grün, später gelb.

¹⁴N-NMR-Spektrum (CH₂Cl₂, 28.9 MHz, -50° C): $\delta = 197$ (s, $\Delta v^{1/2} = 190$ Hz, SN⁺); bei -10° C verschiebt sich das Signal zu $\delta = 201$ und die Halbwertslinienbreite nimmt ab. Bei höheren Temperaturen nimmt die Intensität dieses Signals ab, wobei ein neues Signal mit $\delta = -257$ (s, S₄N₄) entsteht. Einkristall-Röntgenstrukturanalyse: Cl₅Nb(μ -(SN)₂)NbCl₅ aus.

G4.12 Umsetzung von $[PPh_4]^+[NSCl_2]^-$ mit $[Et_3PClPd(\mu-(Cl)_2)PdClPEt_3]$

0.103 g (0.17 mmol) [Et₃PClPd(μ -(Cl)₂)PdClPEt₃] werden in 5 mL CH₂Cl₂ gelöst und zur roten Lösung langsam 0.196 g (0.35 mmol) [PPh₄]⁺[NSCl₂]⁻ in 10 mL CH₂Cl₂ getropft; anschließend rührt man über Nacht. Die tiefrote Lösung wird im Vakuum eingeengt und von kolloidalem Niederschlag (Ph₄PCl) getrennt. Durch langsames Eindiffundieren von *n*-Hexan erhält man kleine, rote, quaderförmige Kristalle.

³¹P-NMR-Spektrum (CH₂Cl₂, 40.48 MHz, RT): $\delta = 115$ (s, Et₃PClPd(μ -(S₃N₂)PdCl₂), 82 (s, P(C₂H₅)₂Cl), 33 (s, Et₃PPdCl₃⁻), 59 (s), 55 (s), 25 (s, Ph₄P⁺), -20 (s, PEt₃). – Raman-Spektrum (550mW, RT): $\tilde{\nu} = 889 \text{ cm}^{-1}$ (40, v SN), 643 (4, v SN), 578 (10), 357 (30, δ SN), 305 (25), zusätzlich zu [Ph₄P]⁺.

G4.13 Umsetzung von [PPh₄]⁺[NSCl₂]⁻ mit elementarem Schwefel

a) 0.16 g (0.35 mmol) $[PPh_4]^+[SNCl_2]^-$ werden in 10 mL CH_2Cl_2 gelöst und mit 0.0077 g (0.03 mmol) elementarem Schwefel versetzt und über Nacht gerührt. Der Schwefel geht dabei langsam in Lösung und die Lösung hellt auf.

Raman-Spektrum (500mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}$ (50), 473 (20, S₈), 306 (5), 293 (5), 221 (40, S₈), 154 (25, S₈). - ¹⁴N-NMR-Spektrum ([D2]Dichlormethan, 28.9 MHz, RT): $\delta = 152$ (s, $\Delta v^{1/2} = 120 \text{ Hz}$, NSCl₂⁻), -57 (s, $\Delta v^{1/2} = 190$, (S₂N₂), -127 (s, $\Delta v^{1/2} = 140$), -260 (s, (NSCl)₃).

b) 0.142 g (0.31 mmol) [PPh₄]⁺[SNCl₂]⁻ werden in 10 mL CH₂Cl₂ gelöst und mit 0.08 g (0.31 mmol) elementarem Schwefel versetzt, dann über Nacht gerührt. Der Schwefel geht dabei langsam in Lösung. Die Reaktionslösung wird getrennt: Ein Teil wird mit Hexan überschichtet, wobei allerdings keine Kristallisation gelingt; der andere Teil wird im Vakuum eingeengt. Die Intensitäten der *peaks* des Schwefels nehmen im Raman-Spektrum an Intensität zu.

Raman-Spektrum (400mW, RT): $\tilde{v} = 1339 \text{ cm}^{-1}$ (10), 473 (55, S₈), 220 (100, S₈), 154 (75, S₈). $-{}^{14}$ N-NMR-Spektrum (CH₂Cl₂, 28.9 MHz, RT): wie unter a), Signale bei $\delta = -57$ und -127 etwas intensiver (ca. 5 %).

G4.14 2,4,6–Tris(triphenylphosphanimino)–1,3,5–triazin (29)

29 wird nach Literatur [63h] hergestellt und aus Dichlorethan umkristallisiert. Ausbeute: 99%, farblose Kristalle, Smp.: 239 °C. – $C_{57}H_{45}N_6P_3$ (906.95) – Elementaranalyse: ber. C 75.5, H 5.0, N 9.3 %; gef. C 75.3, H 5.1, N 9.2 %.– IR-Spektrum (KBr): $\tilde{v} = 3048 \text{ cm}^{-1}$ (w, CH), 1589 (vw, CC), 1575 (vw, CC), 1472 (vs), 1436 (s), 1364 (s, br), 1311 (w), 1287 (vw), 1275 (vw), 1179 (m), 1158 (m), 1111 (s), 1071 (vw), 1029 (vw), 998 (vw), 894 (w), 823 (m), 748 (w), 717 (s), 692 (s), 615 (vw), 532 (s), 524 (s). – Raman-Spektrum (100 mW): $\tilde{v} = 3058 \text{ cm}^{-1}$ (75, CH), 1590 (50, CC), 1574 (20, CC), 1492 (10), 1439 (5), 1376 (10), 1214 (10), 1187 (10), 1162 (10), 1113 (25), 1032 (20), 1000 (100), 899 (5), 691 5), 618 (15), 583 (15), 254 (15). – ¹H-NMR-Spektrum ([D]Chloroform, 400 MHz): $\delta = 8-7.3$ (m, 45 H, C₆H₅). – ¹³C-NMR-Spektrum ([D]Chloroform, 101 MHz): $\delta = 171$ (br, C_{triazin}), 133–127 (54 C, C_{phenyl}). – ³¹P-NMR-Spektrum ([D]Chloroform, 161 MHz): $\delta = 12.3$ (s). – Massenspektrum (EI, 70 eV, *m/z* (%)): 907 (26) [M⁺], 906 (63) [M⁺–H], 302 (50) [PPh₃NCN⁺], 301 (100.0) [PPh₃NCN⁺–H], 288 (6) [PPh₃NC⁺], 277 (69) [PPh₃NH⁺], 262 (79) [PPh₃⁺], 185 (28) [PPh₂⁺], 183 (87) [PPh₂⁺–H₂], 152 (17) [Ph₂⁺–H₂], 108 (25) [PPh⁺], 77 (35) [Ph⁺].

G4.15 2–Triphenylphosphanimino–4–azidotetrazolo[5,1-*a*]–[1,3,5]triazin (31)

Zu einer Lösung von 0.5 g (2.45 mmol) **26** in Diethylether wird eine Lösung von 0.7 g (2.65 mmol) Triphenylphosphan innerhalb von zwei Stunden bei Raumtemperatur gegeben. Die Lösung wird filtriert und der Feststoff aus Dichlorethan umkristallisiert.

Ausbeute: 1.06 g (99%, 2.42 mmol), farblose Kristalle. - C₂₁H₁₅N₁₀P (438.1) -Zersetzungspunkt: 195 °C. – Elementaranalyse: ber. C 57.5, H 3.5, N 32.0 %; gef. C 57.6, H 3.3, N 31.4 %. – IR-Spektrum (KBr, RT): $\tilde{v} = 3058 \text{ cm}^{-1}$ (w, CH), 2153 (m, v_{as} N₃), 1601 (s, CC), 1574 (m), 1539 (s, CC), 1499 (m), 1484 (m), 1454 (s), 1435 (s), 1335 (m), 1320 (m), 1297 (m), 1270 (w), 1230 (w), 1222 (w), 1192 (w), 1188 (w), 1161 (vw), 1156 (vw), 1114 (m), 1088 (vw), 1073 (vw), 1030 (vw), 1012 (vw), 997 (vw), 980 (vw), 912 (w), 886 (w), 789 (w), 783 (vw), 745 (w), 724 (m), 692 (m), 581 (w), 552 (w), 532 (s), 519 (m), 511 (w), 490 (vw). - Raman-Spektrum (100 mW, RT): $\tilde{v} = 3063 \text{ cm}^{-1}$ (92, CH), 2146 (5, $v_{as} N_3$), 1590 (45, CC), 1190 (15, $v_s N_3$), 1002 (100, Phenyl). – ¹H-NMR-Spektrum ([D]Chloroform, 270 MHz, 25 °C): $\delta =$ 8-7.3 (m, 15 H, C₆H₅). $-^{13}$ C-NMR-Spektrum ([D6]DMSO, 101 MHz): $\delta = 162.9$ (d, ${}^{4}J_{CP} = 1.5$ Hz, C20), 158.5 (d, ${}^{4}J_{CP} = 1.5$ Hz, C21), 151.6 (d, ${}^{2}J_{CP} = 1.6$ Hz, C19), 133.7 (d, ${}^{4}J_{CP} = 3.0$ Hz, 3 C, C_{phenvl}), 132.9 (d, ${}^{3}J_{CP} = 10.8$ Hz, 6 C, C_{phenvl}), 129.3 (d, $^{2}J_{CP} = 13.0$ Hz, 6 C, C_{phenvl}), 124.5 (d, $^{1}J_{CP} = 102.6$ Hz, 3 C, C_{phenvl}). - 15 N-NMR-Spektrum ([D6]DMSO, 40.57 MHz, 25 °C): $\delta = 17.0$ (s, N5), -35.1 (s, N6), -79.1 (s, N4), -142.5 (s, N_{azid}), -144.2 (s, N_{azid}), -151.1 (d, ${}^{3}J_{NP} = 11.2$ Hz, N7), -181.2 (d, ${}^{3}J_{\text{NP}} = 6.5 \text{ Hz}, \text{ N2}$), -192.4 (s, N3), -265.4 (s, N8), -266.3 (d, ${}^{1}J_{\text{NP}} = 32.5 \text{ Hz}, \text{ N1}$). - ${}^{31}\text{P-NMR-Spektrum}$ ([D6]DMSO, 161 MHz): $\delta = 24.7$ (s, P). – Massenspektrum (EI, 70 eV, m/z (%)): 438 (100) [M⁺], 412 (30) [M⁺–CN], 386 (52) [M⁺–C₂N₂], 302 (29) [PPh₃NCN⁺], 301 (65) [PPh₃NCN⁺–H], 262 (27) [PPh₃⁺], 185 (43) [PPh₂⁺], 108 (16) [PPh⁺], 77 (7) [Ph⁺].

G4.16 2,4–Bis(triphenylphosphanimino)tetrazolo[5,1-*a*]–[1,3,5]–triazin (32)

Zu einer Lösung von 0.5 g (2.45 mmol) **26** in Diethylether wird eine Lösung von 1.4 g (5.3 mmol) Triphenylphosphan innerhalb von zwei Stunden bei Raumtemperatur zugetropft. Die Reaktionlösung wird für 12 h unter Rückfluss gehalten und anschließend von der Lösung abgetrennt. Das farblose Produkt wird aus CHCl₃ umkristallisiert.

Ausbeute: quantitativ, farblose Kristalle. – $C_{39}H_{30}N_8P_2$ (672.3). – Zersetzungspunkt: 239 °C Lit.: 243°C. – $C_{39}H_{30}N_8P_2 \cdot 2$ CHCl₃ (911.39). – Elementaranalyse: ber. C 54.0, H 3.5, N 12.3 %; gef. C 54.5, H 3.6, N 12.4 %. – IR-Spektrum (KBr, RT): $\tilde{v} = 3078$ cm⁻¹ (CH) (w), 1597 (C=C) (s). – Raman-Spektrum (400 mW, 20 °C): $\tilde{v} =$ 3064 cm⁻¹ (45, CH), 1592 (60, CC), 1576 (15, CC), 1522 (5), 1484–1455 (5), 1440 (7), 1340 (5), 1296 (40), 1223 (6), 1186 (10), 1164 (20), 1112 (20), 1088 (5), 1032 (35), 1004 (10, CH), 966 (10), 900–854 (05), 691 (10), 648 (07), 620 (15), 583 (20), 261 (25). – ¹H-NMR-Spektrum ([D]Chloroform, 400 MHz, 25 °C): δ = 7.35–7.98 (m, 30 H_{phenyl}). – ¹³C-NMR-Spektrum ([D]Chloroform, 101 MHz, 25 °C): δ = 127–134 (m, 36 C_{phenyl}), 152 (dd, *J*_{CP} = 6.9 Hz / 3.1 Hz, C_{triazin}), 159 (d, *J*_{CP} = 1.5 Hz, C_{triazin}), 167 (s, C_{triazin}). – ³¹P-NMR-Spektrum ([D]Chloroform, 161 MHz, 25 °C): δ = 17.3 (s, P), 21.7 (s; P). – MS-Spektrum (EI, 70 eV, *m*/*z* (%)): 672.1 (11) [M⁺], 645 (3) [M⁺–N₂], 386 (100), 262.0 (44) [PPh₃⁺], 185 (37) [PPh₂⁺], 77 (9) [Ph⁺].

G4.17 2,4–Dichloro–6–isocyanato–1,3,5–triazin (35)

Darstellung siehe Literatur [84].

Ausbeute: quantitativ, hydrolyseempfindliche, farblose Stäbchen. – C₄Cl₂N₄O (190.98). – Elementaranalyse: ber. C 25.2, N 29.3 %; gef. C 25.3, N 29.2 %. – Raman-Spektrum (300 mW, RT): $\tilde{v} = 2266 \text{ cm}^{-1}$ (5, v_{as} NCO), 1536 (20, v (CN)₃), 1491 (30, v (CN)₃), 1289 (10, vs (NCO)), 985 (100, v (CN)₃). – ¹³C-NMR-Spektrum

([D]Chloroform, 68 MHz, 25 °C): δ = 131.4 (s, N<u>C</u>O), 165.2 (s, <u>C</u>–NCO) 172.7 (s, <u>C</u>–Cl).

G4.18 2–Chloro–4,6–diisocyanato–1,3,5–triazin (36)

2 g (13.7 mmol) 2–Chloro–4,6–Diamino–1,3,5–triazin (145.55) werden mit 16 g Oxalylchlorid in 50 mL Toluol oder Chlorbenzol gelöst und 12 h unter Rückfluss gehalten (Ende der Gasentwicklung). Nach der Filtration wird das Lösemittel abdestilliert und der farblose Feststoff im Vakuum destilliert. Das Produkt kann durch Sublimation bei 85 °C nochmals gereinigt werden.

Sublimationstemperatur: 85 °C (0.2 Torr, 2.67 10^{-4} bar), feuchtigkeitsempfindliche, farblose Stäbchen. – C₅ClN₅O₂ (197.55). – Elementaranalyse: ber. C 30.4, N 35.5 %; gef. C 30.2, N 35.3 %. – IR-Spektrum (Nujol, CsI-Platten): $\tilde{v} = 2246 \text{ cm}^{-1}$ (s, v_{as} NCO), 1288 (m, v_s NCO). – Raman-Spektrum (500 mW, RT): $\tilde{v} = 2247 \text{ cm}^{-1}$ (4, v_{as} NCO), 1530 (60, v (CN)₃), 1500 (45, v (CN)₃), 1299 (10, v_s NCO), 985 (100, v (CN)₃). – ¹⁴N-NMR-Spektrum ([D6]Benzol, 27.38 MHz): $\delta = -124.5$ (s, N_{triazin}), – 135.3 (s, N_{triazin}), –307.9 (s, <u>NCO</u>). – ¹³C-NMR-Spektrum ([D6]Benzol, 67.94 MHz): $\delta = 173.2$ (<u>C</u>-Cl), 166.0 (<u>C</u>-NCO), 131.5 (N<u>C</u>O).

G4.19 2,4,6–Triisothiocyanato–1,3,5–triazin (37)

12.5 g (0.129 mol) Kaliumthiocyanat in 20 mL kaltem Wasser (0-5 °C) werden unter Rühren zu einer Lösung von 6.1 g (0.033 mol) Cyanurchlorid in 20 mL kaltem Aceton (0–5 °C) gegeben. Die Suspension wird für 30 Minuten gerührt und der tiefgelbe Feststoff anschließend abfiltriert. Anschließend wird der Rückstand mit kaltem Wasser gewaschen. Nicht umgesetztes Cyanurchlorid wird durch Sublimation bei 40°C im Ölpumpenvakuum entfernt.

Ausbeute = 5 g (0.02 mol, 60 %), oranger Feststoff. – Schmelzbereich: 110-125 °C. – C₆N₆S₃ (252.3). – Elementaranalyse: ber. C 28.6, N 33.3, S 38.1 %; gef. C 28.1, N 34.4 S 37.2 %. – Raman-Spektrum (200 mW, 20 °C): $\tilde{v} = 2177 \text{ cm}^{-1}$ (80, v_{as} NCS), 1501 (30),1474 (30), 1400 (20), 1261 (15, br), 974 (100, v (CN)₃). 838 (10), 695 (10), 350 (15), 210 (40), 100 (35). – ¹³C-NMR-Spektrum ([D]Chloroform, 67.94 MHz): $\delta = 173.6$ (s, C_{triazin}), 129.1 (s, N<u>C</u>S).

G4.20 $Ph_3PNSiMe_3 \cdot ICN$ (39)

Innerhalb von 30 Minuten wird eine Lösung von 0.7 g (4.6 mmol) ICN in CH_2Cl_2 (10 mL) zu einer Lösung von 1.6 g (4.6 mmol) $Ph_3PNSiMe_3$ in CH_2Cl_2 (20 mL) bei Raumtemperatur gegeben. Die Reaktionslösung wird 2 h gerührt. Das Lösemittel wird langsam mit einem Argon-Strom entfernt und es werden gelbe Einkristalle erhalten.

Ausbeute: ca. 2.1 g (4.18 mmol, 90 %) blassgelbe Kristalle. – $C_{22}H_{24}IN_2PSi$ (502.39). – Elementaranalyse: ber. H 4.8 C 52.6 N 5.6 %; gef. H 4.8 C 51.8 N 5.7 %. – Raman-Spektrum (200 mW, RT): $\tilde{v} = 3076 \text{ cm}^{-1}$ (4), 3144 (5), 3069 (43), 3061 (61), 3010 (5), 2955 (13), 2893 (20), 2147 (34), 1590 (60), 1574 (12), 1437 (3), 1409 (3), 1185 (10), 1167 (13), 1160 (14), 1113 (6), 1098 (15), 1029 (34), 1000 (100), 930 (2), 858 (4), 752 (3), 713 (5), 685 (5), 666 (6), 619 (16), 604 (18), 598 (16), 538 (10), 421 (66), 415 (55), 384 (80), 325 (1) 275 (8), 254 (22), 225 (14), 206 (15).

G4.21 [K([18]krone–6)(N₃)(OPPh₃)] (41)

Zu 0.5 g (1.9 mmol) Triphenylphosphan und 0.502 g (1.9 mmol) [18]Krone–6 in 30 mL peroxidhaltigem THF gibt man eine Suspension von 0.154 g (1.9 mmol) Kaliumazid in 30 mL THF. Die Reaktionsmischung wird eine Nacht unter Rückfluss gehalten, abfiltriert und zum Kristallisieren stehen gelassen.

Ausbeute: 0.178-0.237 g (0.285-0.38 mmol, 15-20 %, abhängig von der Bestrahlungsdauer (UV-Licht mit $\lambda = 254$ nm)). – Farblose hexagonale Stäbchen. – Smp.: >190°C. – C₃₀H₃₉KN₃O₇P (623.73). – Elementaranalyse: ber. C 57.8 H 6.3 N 6.7 %; gef. C 57.6 H 6.2 N 6.7 %. – IR-Spektrum (KBr, RT): $\tilde{v} = 3039$ cm⁻¹ (vw, v CH_{phenyl}), 2915 (sh, m), 2898 (m), 2851 (w), 2007 (s, v_{as} N₃), 1349 (m), 1282 (w), 1201 (w), 1111 (vs), 963 (m), 721 (s), 542 (s). – Raman-Spektrum (300 mW, RT): \tilde{v} = 3068 cm⁻¹ (30, v CH_{phenyl}), 3044 (70, v CH_{phenyl}), 2945-2804 (10-50, v CH_{[18]Krone6}), 1587 (55, C_{phenyl}), 1570 (20, C_{phenyl}), 1472 (30), 1320 (35, v_s N₃), 1284 (20, sh), 1275 (40), 1243 (20), 1203 (30), 1184 (10, Ph₃PO), 1155 (15), 1138 (20), 1111 (15), 1092 (15), 1026 (35, Ph₃PO), 1001 (70, sh, Ph) 995 (100), 871 (30), 834 (20), 683 (45, Ph₃PO), 617 (35, Ph₃PO), 551 (15), 455 (15), 368 (15), 308 (20, Ph₃PO), 283 (20), 255 (55, Ph₃PO).

G4.22 $K([18]krone-6)(OCN)(OPPh_3)]$ (42)

Synthese wurde wie bei Verbindung **41** mit 0.154 g (1.9 mmol) Kaliumcyanat durchgeführt.

Ausbeute: 0.119-0.238 g (0.19-0.38 mmol, 10-20 %) bezogen auf Kronenether (Abhängig von der Bestrahlungsdauer (UV-Licht mit $\lambda = 254$ nm)), farblose Stäbchen. – C₃₁H₃₉KNO₈P (623.73). – Elementaranalyse: ber. C 59.7 H 6.3 N 2.3 %; gef. C 59.6 H 6.2 N 2.2 %. – Raman-Spektrum (300 mW, RT): $\tilde{v} = 3069$ cm⁻¹ (v CH_{phenyl}), 3046 (v CH_{phenyl}), 2945-2804 (15-70, v CH_{[18]Krone6}), 2138 (20, v_{as} OCN), 1587 (55, C_{phenyl}), 1570 (20, C_{phenyl}), 1471 (20), 1284 (5, sh), 1275 (50), 1244 (10), 103 (25), 1191 (10, v_s OCN), 1155 (10, Ph₃PO), 1138 (10), 1112 (5), 1093 (10, Ph₃PO), 1026 (35, Ph₃PO), 1001 (70, sh, C_{phenyl}) 995 (100), 871 (25), 834 (10), 683 (55, Ph₃PO), 617 (30, Ph₃PO), 551 (5), 453 (5), 368 (5), 308 (15), 283 (10), 254 (45, Ph₃PO) 196 (5).

G4.23 K([18]krone–6)(SCN)(OPPh₃)] (43)

Synthese wurde analog zu der Synthese von **41** mit 0.185 g (1.9 mmol) Kaliumthiocyanat durchgeführt.

Ausbeute: siehe **42**. Abhängig von der Bestrahlungsdauer (UV-Licht mit $\lambda = 254$ nm), farblose Stäbchen. – C₃₁H₃₉KNO₇PS (639.79). – Elementaranalyse: ber. C 58.2 H 6.1 N 2.2 %; gef. C 58.1 H 6.1 N 2.2 %. – Raman-Spektrum (300 mW, RT): $\tilde{v} = 3051 \text{ cm}^{-1}$ (95, v CH_{phenyl}), 2945-2803 (30-60, v CH_{[18]Krone6}), 2069 (45, v_{as} NCS), 2063 (50, v_{as} NCS), 1588 (60, C_{phenyl}), 1570 (20, C_{phenyl}), 1471 (30), 1274 (35), 1244 (20), 1204 (30), 1181 (10, Ph₃PO), 1158 (20, Ph₃PO), 1136 (20), 1112 (15), 1093 (20, Ph₃PO), 1028 (40, Ph₃PO), 1002 (100, C_{phenyl}), 996 (70), 869 (25), 832 (20), 740 (15), 684 (60, Ph₃PO), 618 (45, Ph₃PO), 550 (15), 308 (20), 282 (15), 257 (50, Ph₃PO), 195 (10).

G4.24 K([18]krone–6)(SeCN)(OPPh₃)] (44)

Synthese wurde wie bei Verbindung **41** mit 0.274 g (1.9 mmol) Kaliumselenocyanat durchgeführt.

Ausbeute: wie bei **42** (10-20%). Abhängig von der Bestrahlungsdauer (UV-Licht mit $\lambda = 254$ nm), farbloser Feststoff. – C₃₁H₃₉KNO₇PSe (686.69). – Elementaranalyse:

ber. C 54.2 H 5.7 N 2.0 %; gef. C 54.1 H 5.6 N 2.0 %. – Raman-Spektrum (300 mW, RT): $\tilde{v} = 3058 \text{ cm}^{-1}$ (90, v CH_{phenyl}), 2946-2803 (25-55, v CH_{[18]Krone6}), 2078 (60, v_{as} NCSe), 1589 (65, C_{phenyl}), 1570 (25, C_{phenyl}), 1472 (30), 1407 (10), 1283 (15, sh), 1274 (35), 1244 (20), 1205 (30), 1188 (20), 1181 (25, Ph₃PO), 1157 (30, Ph₃PO), 1136 (25), 1113 (20), 1095 (25, Ph₃PO), 1028 (45, Ph₃PO), 1002 (100, C_{phenyl}), 996 (70, sh), 868 (35), 832 (25), 685 (45, Ph₃PO), 618 (35, Ph₃PO), 561 (20, v SeC), 550 (20), 460 (15, br), 307 (20), 281 (20), 256 (45, Ph₃PO), 193 (10).

G4.25 (PN)₃(NCS)₆ (48)

Zu 1 g (10.3 mmol) KSCN in 40 mL CH₃COCH₃ werden 0.425 g (1.3 mmol) (NPCl₂)₃ in 10 mL CH₃COCH₃ gegeben. Zu der Lösung werden 0.2 g (0.76 mmol) [18]Krone–6 gegeben und die Reaktionsmischung für 30 min refluxiert. Überschüssiges KSCN und gebildetes KCl werden abfiltriert. Die Lösung wird mit einem Trockeneisbad gekühlt und der ausfallende Feststoff filtriert. Der Feststoff wird aus *n*-Heptan umkristallisiert.

Ausbeute: 0.534 g (1.5 mmol, 85 %), Smp.: 41-42 °C. – C₆N₉P₃S₆ (483.44). – Elementaranalyse: ber. C 14.9, N 26.1 %; gef. C 14.9, N 25.9 %. – Raman-Spektrum (100 mW, RT): $v = 2048 \text{ cm}^{-1}$ (12, v_{as} NCS), 2048 (11), 2008 (11), 1958 (16, br), 1084 (100), 1071 (40), 1060 (35), 893 (5), 779 (22), 686 (70), 474 (5), 403 (10), 378 (30), 358 (25), 276 (18), 252 (13), 226 (10), 198 (19). – ¹³C-NMR-Spektrum ([D]Chloroform, 68 MHz, RT): $\delta = 146.9$ (N = [²*J*_{PC} + 2 · ⁴*J*_{PC}] = 21 Hz (AA'₂X)), N<u>C</u>S). – ³¹P-NMR-Spektrum ([D]Chloroform, 109 MHz, RT): $\delta = -25.9$ (s).

H Anhang

H1 Einkristall-Röntgenstrukturanalyse von [(Ph₃PN)₂SCl]⁺[NSCl₂]⁻

	9
Formel	$C_{36}H_{30}Cl_3N_3P_2S_2 \cdot C_6H_6$
Molekulargewicht $[g \cdot mol^{-1}]$	815.193
Gitterkonstanten [Å]	$a = 22.373(2), \beta = 108.46(1)$
	b = 9.4108(7),
	c = 20.030(3)
Zellvolumen [Å ³]	4000.3(7)
Zahl der Formeleinheiten pro Zelle	4
Dichte (ber.) $[g \cdot cm^{-3}]$	1.3536(2)
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$
Kristallgröße [mm]	$0.25 \times 0.10 \times 0.02$
Messgerät	Stoe IPDS image-plate area
	detector
Strahlung	Mo-K _{α} $\lambda = 0.71073$
Messtemperatur	200(3) K
Messbereich	$\theta = 1.92 - 22.26^{\circ}$
Indexbereich h _{min/max}	-23/23
k _{min/max}	-9/10
l _{min/max}	-21/15
Zahl der gemessenen Reflexe	12023
Zahl der unabhängigen Reflexe	4785 [R(int) = 0.1175]
Zahl der beobachteten Reflexe mit I >	2σI 2106
F(000)	1688
Strukturaufklärung	Direkte Methoden
Verfeinerung	Vollmatrix gegen F^2
Anzahl der Parameter	469
Verwendete Rechenprogramme	SHELXL-97, SHELXS-97
Goodness-of-Fit in F^2	0.629
Gütefaktoren R (I > 2 σ I)	R1 = 0.0398; wR2 = 0.0736
Restelektronendichten $[e \cdot A^{-3}]$	$\Delta \rho_{\text{max}} = 0.210; \ \Delta \rho_{\text{min}} = -0.248$

H1.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

H1.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

Atom	Wyck.	Symm.	X	у	Z	U
P1	4 <i>e</i>	1	0.63572(5)	0.28022(15)	0.90505(8)	
C11	4e	1	0.67277(19)	0.3987(5)	0.8600(3)	
C21	4e	1	0.6670(2)	0.3741(6)	0.7911(3)	
H21	4e	1	0.64400	0.29350	0.76800	0.0380
C31	4e	1	0.6940(2)	0.4645(6)	0.7543(3)	
H31	4e	1	0.69040	0.44610	0.70650	0.0390
C41	4e	1	0.7265(2)	0.5829(6)	0.7889(4)	
H41	4e	1	0.74510	0.64680	0.76450	0.0430
C51	4e	1	0.7317(2)	0.6079(6)	0.8568(4)	
H51	4e	1	0.75370	0.68990	0.87950	0.0400
C61	4e	1	0.70581(19)	0.5164(6)	0.8944(3)	
H61	4e	1	0.71050	0.53380	0.94250	0.0320
C12	4e	1	0.55368(18)	0.2724(5)	0.8556(3)	
C22	4e	1	0.5201(2)	0.1486(6)	0.8543(3)	
H22	4e	1	0.54120	0.06450	0.87560	0.0320
C32	4e	1	0.4558(2)	0.1481(6)	0.8218(3)	
H32	4e	1	0.43260	0.06320	0.82090	0.0390
C42	4e	1	0.4248(2)	0.2689(7)	0.7906(3)	

1112	10	1	0.38030	0 26760	0 76010	0.0280
052	40	1	0.38030	0.20700	0.70910	0.0580
052	4 <i>e</i>	1	0.4581(2)	0.3914(6)	0.7908(3)	0.0400
H52	4e	1	0.43/00	0.47510	0.76910	0.0400
C62	4e	1	0.5231(2)	0.3921(6)	0.8230(3)	
H62	4e	1	0.54650	0.47610	0.82230	0.0330
C13	4e	1	0.6416(2)	0.3476(5)	0.9899(3)	
C23	40	1	0.6882(2)	0 2940(6)	1.0488(4)	
H23	10	1	0.0002(2)	0 22320	1.04360	0.0440
C22	40	1	0.71070	0.22520	1.1149(2)	0.0440
033	40	1	0.6924(2)	0.3457(7)	1.1148(5)	0.0400
H33	4e	1	0.72380	0.30950	1.15510	0.0490
C43	4e	1	0.6520(2)	0.4476(6)	1.1227(4)	
H43	4 <i>e</i>	1	0.65570	0.48240	1.16840	0.0490
C53	4e	1	0.6059(2)	0.5004(6)	1.0652(4)	
H53	4e	1	0 57760	0 57100	1.07100	0.0470
C63	10	1	0.6009(2)	0 4512(6)	0.0008(3)	0.0 .7 0
11(2	4-	1	0.0000(2)	0.49920	0.0000	0.0290
H03	40	1	0.56890	0.48820	0.96020	0.0380
NI	4 <i>e</i>	1	0.66046(15)	0.1161(4)	0.9113(3)	
S1	4e	1	0.72500(5)	0.04965(14)	0.92015(8)	
Cl1	4 <i>e</i>	1	0.71991(6)	-0.00131(16)	0.80389(9)	
N2	4 <i>e</i>	1	0.77693(14)	0.1668(4)	0.9421(2)	
P2	4e	1	0.85196(5)	0.13335(15)	0.96087(8)	
C14	10	1	0.8894(2)	0 1979(6)	1.0468(3)	
C24	40	1	0.0004(2)	0.1770(0) 0.1240(6)	1.0400(3) 1.0027(4)	
C24	40	1	0.9443(2)	0.1540(0)	1.0927(4)	0.0470
H24	4 <i>e</i>	1	0.96150	0.05140	1.07850	0.04/0
C34	4e	1	0.9725(2)	0.1917(7)	1.1576(4)	
H34	4 <i>e</i>	1	1.00960	0.14930	1.18810	0.0530
C44	4e	1	0.9480(3)	0.3100(7)	1.1794(3)	
H44	4e	1	0.96810	0.34840	1.22490	0.0510
C54	40	1	0.8944(3)	0.3731(6)	11354(4)	
H54	10	1	0.87780	0.45500	1 15020	0.0530
1154 C(4	40	1	0.07700	0.45590	1.13020	0.0550
04	40	1	0.8654(2)	0.3109(0)	1.0709(4)	0.0450
H64	4e	I	0.82780	0.35960	1.04140	0.0470
C15	4e	1	0.8802(2)	0.2329(5)	0.9017(3)	
C25	4 <i>e</i>	1	0.8393(2)	0.2911(6)	0.8409(3)	
H25	4 <i>e</i>	1	0.79530	0.27550	0.83010	0.0390
C35	4 <i>e</i>	1	0.8606(2)	0.3704(6)	0.7960(3)	
H35	40	1	0.83160	0 40770	0 75420	0.0460
C45	10	1	0.0246(3)	0.3965(6)	0.8114(4)	0.0100
1145	4.0	1	0.9240(3)	0.5705(0)	0.0114(4)	0.0520
H45	40	1	0.94000	0.45210	0.78080	0.0520
C55	4e	1	0.9655(2)	0.3389(7)	0.8730(4)	
H55	4e	1	1.00940	0.35650	0.88440	0.0590
C65	4 <i>e</i>	1	0.9445(2)	0.2586(6)	0.9169(3)	
H65	4e	1	0.97370	0.21970	0.95820	0.0450
C16	4 <i>e</i>	1	0.87035(18)	-0.0499(5)	0.9560(3)	
C26	4e	1	0.86751(19)	-0.1444(6)	1.0074(3)	
H26	10	1	0.85720	_0 11000	1.04690	0.0340
C26	40	1	0.03720 0.8701(2)	0.2862(6)	1.04070 1.0022(2)	0.0540
0.50	40	1	0.0791(2)	-0.2802(0)	1.0033(3)	0.0410
H36	4 <i>e</i>	1	0.8/8/0	-0.34840	1.04050	0.0410
C46	4e	1	0.8914(2)	-0.3374(6)	0.9450(4)	
H46	4e	1	0.89890	-0.43610	0.94140	0.0400
C56	4 <i>e</i>	1	0.8931(2)	-0.2466(6)	0.8910(3)	
H56	4 <i>e</i>	1	0.90140	-0.28320	0.85070	0.0420
C66	4 <i>e</i>	1	0.8825(2)	-0.1026(6)	0.8960(3)	
H66	40	1	0.88340	-0.04000	0.85920	0.0350
C17	10	1	0.5832(3)	-0.2261(6)	0.8913(4)	0.0550
U17	4.0	1	0.5652(5)	-0.2201(0)	0.0713(4)	0.0510
П17 С27	40	1	0.00880	-0.24040	0.80200	0.0310
C27	4 <i>e</i>	1	0.6102(3)	-0.1860(6)	0.9592(4)	
H27	4e	1	0.65480	-0.17850	0.97750	0.0600
C37	4e	1	0.5754(4)	-0.1567(7)	1.0011(5)	
H37	4e	1	0.59510	-0.12620	1.04820	0.0810
C47	4 <i>e</i>	1	0.5110(4)	-0.1714(8)	0.9752(6)	
H47	4e	1	0.48600	-0.15380	1.00480	0.0940
C57	10	1	0 4831(3)	-0.2115(7)	0 9067(5)	0.0010
U57	40	1	0.4001(0)	-0.2113(7)	0.2007(3)	0.0760
1157	40	1	0.43800	-0.22150	0.00000	0.0700
00/	4e	1	0.5186(3)	-0.25/4(6)	0.8639(4)	0 0
H67	4e	1	0.49910	-0.26280	0.81600	0.0550
S2	4 <i>e</i>	1	0.22429(6)	0.21613(17)	0.36783(10)	
Cl2	4e	1	0.24467(7)	0.46651(17)	0.39454(10)	
Cl3	4e	1	0.11404(6)	0.25563(19)	0.30353(10)	
N3	4e	1	0.2334(2)	0.1286(5)	0.4290(3)	
	-					

Atom	<i>U</i> ₁₁	U22	U33	<i>U</i> ₁₂	U13	U23
P1	0.0193(7)	0.0227(9)	0.0223(11)	-0.0001(6)	0.0037(6)	0.0019(8)
C11	0.013(2)	0.032(4)	0.019(4)	0.005(2)	0.006(2)	0.008(3)
C21	0.024(3)	0.026(4)	0.039(5)	-0.001(3)	0.001(3)	0.000(3)
C31	0.036(3)	0.049(4)	0.018(4)	0.014(3)	0.013(3)	0.015(4)
C41	0.035(3)	0.025(4)	0.055(6)	0.000(3)	0.023(3)	0.015(4)
C51	0.021(3)	0.027(4)	0.051(6)	-0.004(2)	0.010(3)	0.001(4)
C61	0.026(3)	0.024(4)	0.029(4)	0.002(3)	0.006(3)	0.000(3)
C12	0.018(2)	0.016(3)	0.018(4)	0.002(3)	0.004(2)	0.000(3)
C22	0.030(3)	0.030(4)	0.020(4)	0.003(3)	0.007(3)	0.002(3)
C32	0.021(3)	0.028(4)	0.043(5)	-0.006(3)	0.004(3)	-0.002(3)
C42	0.020(3)	0.051(5)	0.022(4)	-0.002(3)	0.005(2)	-0.010(3)
C52	0.024(3)	0.035(4)	0.037(5)	0.007(3)	0.004(3)	0.002(3)
C62	0.029(3)	0.019(4)	0.033(5)	-0.003(2)	0.008(3)	-0.001(3)
C13	0.022(3)	0.029(4)	0.015(4)	-0.007(2)	0.004(3)	0.002(3)
C23	0.033(3)	0.040(4)	0.037(5)	0.001(3)	0.010(3)	0.009(4)
C33	0.039(3)	0.059(5)	0.018(5)	0.003(3)	0.000(3)	0.009(4)
C43	0.056(4)	0.043(4)	0.025(5)	-0.012(3)	0.013(3)	-0.008(4)
C53	0.054(4)	0.043(4)	0.025(5)	0.011(3)	0.020(3)	0.002(4)
C63	0.028(3)	0.036(4)	0.027(5)	0.009(3)	0.004(3)	0.007(3)
N1	0.016(2)	0.022(3)	0.042(4)	0.0024(19)	0.003(2)	0.010(2)
S1	0.0201(7)	0.0218(9)	0.0331(11)	0.0018(6)	0.0034(6)	0.0010(8)
Cl1	0.0481(8)	0.0439(11)	0.0282(12)	-0.0002(7)	-0.0005(7)	-0.0091(8)
N2	0.0123(19)	0.018(3)	0.034(4)	-0.0003(16)	0.0038(19)	0.000(2)
P2	0.0189(7)	0.0243(9)	0.0218(11)	0.0024(6)	0.0044(6)	0.0023(8)
C14	0.024(3)	0.026(4)	0.015(4)	-0.007(2)	0.006(3)	-0.005(3)
C24	0.024(3)	0.045(4)	0.046(5)	0.009(3)	0.006(3)	0.009(4)
C34	0.030(3)	0.072(6)	0.023(5)	-0.005(3)	-0.002(3)	-0.002(4)
C44	0.051(4)	0.059(5)	0.018(5)	-0.023(3)	0.010(3)	-0.016(4)
C54	0.052(4)	0.037(4)	0.039(5)	-0.004(3)	0.006(3)	-0.010(4)
C64	0.032(3)	0.033(4)	0.040(5)	-0.002(3)	-0.006(3)	0.006(3)
C15	0.027(3)	0.021(3)	0.025(4)	0.005(2)	0.014(3)	0.003(3)
C25	0.024(3)	0.043(4)	0.031(5)	-0.005(3)	0.010(3)	0.007(3)
C35	0.035(3)	0.044(4)	0.035(5)	0.005(3)	0.011(3)	0.016(4)
C45	0.058(4)	0.032(4)	0.053(6)	-0.003(3)	0.036(4)	0.007(3)
C55	0.026(3)	0.065(5)	0.058(6)	0.002(3)	0.013(4)	0.022(4)
C65	0.022(3)	0.039(4)	0.048(5)	0.002(3)	0.006(3)	0.019(3)
C16	0.015(2)	0.025(3)	0.016(4)	0.000(2)	0.007(2)	0.003(3)
C26	0.023(3)	0.039(4)	0.024(4)	0.001(3)	0.008(3)	-0.008(3)
C36	0.037(3)	0.029(4)	0.037(5)	0.010(3)	0.011(3)	0.015(3)
C46	0.024(3)	0.031(4)	0.045(5)	0.001(3)	0.009(3)	0.002(4)
C56	0.032(3)	0.043(5)	0.030(5)	-0.006(3)	0.011(3)	-0.019(3)
C66	0.027(3)	0.029(4)	0.032(5)	0.001(2)	0.012(3)	-0.002(3)
C17	0.047(4)	0.038(4)	0.044(6)	0.011(3)	0.017(3)	0.010(4)
C27	0.061(4)	0.039(5)	0.040(6)	-0.008(3)	0.002(4)	0.022(4)
C37	0.129(7)	0.035(5)	0.045(6)	-0.013(5)	0.037(6)	-0.001(4)
C47	0.107(7)	0.072(7)	0.087(9)	-0.001(5)	0.076(6)	0.012(6)
C57	0.047(4)	0.052(5)	0.093(8)	-0.002(4)	0.026(5)	0.027(6)
C67	0.066(4)	0.027(4)	0.041(5)	0.002(3)	0.013(4)	0.005(3)
S2	0.0449(8)	0.0409(11)	0.0434(14)	0.0001(8)	0.0161(8)	-0.0005(10)
Cl2	0.0732(10)	0.0486(12)	0.0507(15)	-0.0251(9)	0.0199(9)	-0.0056(10)
Cl3	0.0594(9)	0.0637(14)	0.0397(14)	-0.0116(9)	-0.0109(8)	0.0094(10)
N3	0.053(3)	0.051(4)	0.068(5)	0.008(3)	0.012(3)	0.014(4)

H2 Einkristall-Röntgenstrukturanalyse von Cl₅Nb(µ–(SN)₂)NbCl₅

	$Cl_5Nb(\mu - (SN)_2)NbCl_5$
Formel	$Cl_{10}N_2Nb_2S_2$
Molekulargewicht $[g \cdot mol^{-1}]$	632.46
Gitterkonstanten [Å]	$a = 9.667(1), \qquad \alpha = 72.77(1),$
	$b = 12.906(2), \beta = 89.26(1),$
	$c = 13.801(2)$ $\gamma = 88.58(1)$
Zellvolumen [Å ³]	1643.9(4)
Zahl der Formeleinheiten pro Zelle	4
Dichte (ber.) $[g \cdot cm^{-3}]$	2.555
Kristallsystem, Raumgruppe	triklin, P1
Kristallgröße [mm]	$0.43 \times 0.30 \times 0.10$
Messgerät	CAD4 (Nonius, 1977)
Strahlung	Mo-K _{α} $\lambda = 0.71073$
Messtemperatur	293(2) K
Messbereich	$\theta = 2.58 - 23.97$
Indexbereich h _{min/max}	-11/0
$\mathbf{k}_{\min/\max}$	-14/14
$l_{min/max}$	-15/15
Zahl der gemessenen Reflexe	5485
Zahl der unabhängigen Reflexe	5137 [R(int) = 0.0161]
Zahl der beobachteten Reflexe mit I >	3557
2 <i>σ</i> Ι	
F(000)	1192
Strukturaufklärung	Direkte Methoden
Verfeinerung	Vollmatrix gegen F^2
Anzahl der Parameter	289
Verwendete Rechenprogramme	SHELXL-93, SHELXS-86
Goodness-of-Fit on F^2	1.123
Gütefaktoren R (I > 2 σ I)	R1 = 0.0593; wR2 = 0.1769
Restelektronendichten $[e \cdot A^{-3}]$	$\Delta \rho_{\rm max} = 2.020; \ \Delta \rho_{\rm min} = -0.584$

H2.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Atom	Wyck.	Symm.	X	У	Z
Nb1	2i	1	0.44410(9)	0.01234(7)	0.74059(7)
Nb2	2i	1	0.05668(9)	-0.27132(7)	0.50590(7)
Nb3	2i	1	0.94205(10)	-0.23365(7)	0.99151(7)
Nb4	2i	1	0.55676(10)	-0.52121(7)	0.75907(7)
Cl1	2i	1	0.5738(4)	0.1031(3)	0.8204(3)
Cl2	2i	1	0.4096(3)	0.1580(2)	0.5978(2)
Cl3	2i	1	0.2222(3)	0.0394(3)	0.7938(3)
Cl4	2i	1	0.4635(4)	-0.1508(3)	0.8663(3)
Cl5	2i	1	0.6106(3)	-0.0544(2)	0.6464(2)
Cl6	2i	1	-0.0788(4)	-0.3599(3)	0.4277(3)
Cl7	2i	1	0.0318(4)	-0.3925(3)	0.6646(3)
Cl8	2i	1	0.2749(3)	-0.3438(3)	0.4928(3)
Cl9	2i	1	0.0994(4)	-0.1310(3)	0.3604(2)
Cl10	2i	1	-0.1070(3)	-0.1575(2)	0.5546(2)
Cl11	2i	1	1.0732(4)	-0.1420(3)	1.0692(3)
Cl12	2i	1	0.8903(3)	-0.1040(2)	0.8376(2)
Cl13	2i	1	0.7340(4)	-0.1922(3)	1.0529(3)
Cl14	2i	1	0.9412(4)	-0.4049(3)	1.1101(2)
Cl15	2i	1	1.1263(3)	-0.2906(3)	0.9082(3)
Cl16	2i	1	0.4196(4)	-0.6107(3)	0.6835(3)
Cl17	2i	1	0.5511(4)	-0.6287(3)	0.9276(2)
Cl18	2i	1	0.7590(4)	-0.6092(3)	0.7380(3)
Cl19	2i	1	0.6180(3)	-0.3732(3)	0.6228(2)
Cl20	2i	1	0.3775(3)	-0.4156(3)	0.7958(2)
S1	2i	1	0.3553(3)	-0.1650(2)	0.5944(2)
S2	2i	1	0.1469(3)	-0.0925(2)	0.6494(2)
S3	2i	1	0.7542(3)	-0.3045(2)	0.7972(2)
S4	2i	1	0.7496(3)	-0.4524(2)	0.9520(2)
N1	2i	1	0.3152(9)	-0.0819(7)	0.6599(7)
N2	2i	1	0.1881(8)	-0.1760(7)	0.5832(6)
N3	2i	1	0.8132(8)	-0.3303(6)	0.9130(6)
N4	2i	1	0 6893(9)	-0.4263(7)	0.8352(6)

H2.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

Atom	<i>U</i> ₁₁	U22	U33	<i>U</i> 12	<i>U</i> 13	U23
Nb1	0.0304(5)	0.0328(5)	0.0352(6)	-0.0051(4)	-0.0027(4)	-0.0132(4)
Nb2	0.0297(5)	0.0309(5)	0.0331(5)	-0.0032(4)	-0.0037(4)	-0.0106(4)
Nb3	0.0330(6)	0.0326(5)	0.0365(6)	-0.0053(4)	-0.0040(4)	-0.0125(4)
Nb4	0.0332(6)	0.0298(5)	0.0358(6)	-0.0037(4)	-0.0066(4)	-0.0102(4)
Cl1	0.055(2)	0.078(2)	0.085(3)	-0.013(2)	-0.016(2)	-0.049(2)
Cl2	0.061(2)	0.0346(15)	0.053(2)	0.0022(13)	-0.0032(15)	-0.0043(13)
Cl3	0.042(2)	0.081(2)	0.075(2)	-0.011(2)	0.015(2)	-0.053(2)
Cl4	0.071(2)	0.064(2)	0.049(2)	-0.012(2)	-0.013(2)	0.010(2)
Cl5	0.0336(15)	0.049(2)	0.058(2)	0.0037(12)	0.0018(13)	-0.0201(14)
Cl6	0.063(2)	0.069(2)	0.090(3)	-0.014(2)	-0.021(2)	-0.043(2)
Cl7	0.065(2)	0.046(2)	0.055(2)	-0.0040(15)	0.001(2)	0.0022(15)
Cl8	0.040(2)	0.069(2)	0.063(2)	0.0156(14)	-0.0084(14)	-0.037(2)
Cl9	0.066(2)	0.059(2)	0.040(2)	-0.006(2)	0.0021(15)	-0.0009(14)
Cl10	0.0328(15)	0.047(2)	0.059(2)	0.0037(12)	0.0014(13)	-0.0168(14)
Cl11	0.072(2)	0.069(2)	0.083(3)	-0.017(2)	-0.027(2)	-0.040(2)
Cl12	0.047(2)	0.0359(14)	0.053(2)	-0.0034(12)	-0.0057(14)	-0.0019(13)
Cl13	0.051(2)	0.094(3)	0.076(2)	-0.009(2)	0.013(2)	-0.060(2)
Cl14	0.085(3)	0.055(2)	0.042(2)	-0.020(2)	-0.017(2)	0.0084(15)
Cl15	0.038(2)	0.052(2)	0.076(2)	0.0070(13)	0.0081(15)	-0.011(2)
Cl16	0.072(2)	0.065(2)	0.103(3)	-0.008(2)	-0.041(2)	-0.042(2)
Cl17	0.064(2)	0.046(2)	0.048(2)	-0.0159(15)	-0.0078(15)	0.0051(14)
Cl18	0.057(2)	0.068(2)	0.067(2)	0.020(2)	-0.013(2)	-0.039(2)
Cl19	0.053(2)	0.057(2)	0.0361(15)	-0.0063(14)	0.0010(13)	-0.0006(13)
Cl20	0.044(2)	0.059(2)	0.054(2)	0.0087(14)	0.0061(14)	-0.012(2)
S1	0.0310(14)	0.0401(14)	0.043(2)	0.0002(11)	-0.0005(11)	-0.0227(12)
S2	0.0286(14)	0.0406(15)	0.047(2)	-0.0044(11)	0.0033(12)	-0.0238(13)
S3	0.042(2)	0.0302(13)	0.0315(14)	-0.0075(11)	-0.0046(11)	-0.0062(11)
S4	0.049(2)	0.0316(14)	0.0298(14)	-0.0101(12)	-0.0034(12)	-0.0078(11)
N1	0.030(5)	0.034(5)	0.044(5)	-0.001(4)	0.002(4)	-0.019(4)
N2	0.027(5)	0.031(5)	0.038(5)	0.003(4)	0.001(4)	-0.012(4)
N3	0.029(5)	0.026(4)	0.030(5)	-0.005(3)	0.001(4)	-0.004(4)
N4	0.032(5)	0.032(5)	0.037(5)	-0.005(4)	0.000(4)	-0.010(4)

H3 Einkristall–Röntgenstrukturanalyse von

2,4,6-Tris(triphenylphosphanimino)-1,3,5-triazin (29)

H3.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

		29		
Formel		$C_{57}H_{45}N_6P_3$		
Molekulargewicht [g ·	mol ⁻¹]	906.90		
Gitterkonstanten [Å]		$a = 14.705(3)$ $\alpha = 108.99(2)$,		
		$b = 17.705(4)$ $\beta = 91.61(1)$,		
		$c = 21.528(3)$ $\gamma = 111.66(2)^{\circ}$,		
Zellvolumen [Å ³]		4855(2)		
Zahl der Formeleinhei	ten pro Zelle	4		
Dichte (ber.) $[g \cdot cm^{-3}]$]	1.241		
Kristallsystem, Raumg	ruppe	triklin Raumgruppe P_{1}^{-1}		
Kristallgröße [mm]		$0.53 \times 0.37 \times 0.17$		
Messgerät		(Nonius Mach3)		
Strahlung		Mo-K $\sim \lambda = 0.71073$		
Messtemperatur		293(2) K		
Messbereich		$\theta = 2.28 - 23.98$		
Indexbereich	h _{min/max}	-16/16		
	k _{min/max}	-19/20		
	l _{min/max}	-24/0		
Zahl der gemessenen H	Reflexe	15650		
Zahl der unabhängigen Reflexe		15185 [R(int) = 0.0219]		
Zahl der beobachteten	Reflexe mit I > $2\sigma I$	10676		
F(000)		1896		
Strukturaufklärung		Direkte Methoden		
Verfeinerung		Vollmatrix gegen F^2		
Anzahl der Parameter		865		
Verwendete Rechenprogramme		SHELXL-93, SHELXS-86		
Goodness-of-Fit on F^2		1.026		
Gütefaktoren R (I > 2 c	л) 	R1 = 0.0636; wR2 = 0.1434		
Restelektronendichten	$[\mathbf{e} \cdot \mathbf{A}^{-3}]$	$\Delta \rho_{\rm max} = 0.664; \ \Delta \rho_{\rm min} = -0.417$		

H3.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Atom	Wyck.	Symm.	X	У	Z	U
N2 $2i$ 1 $-0.080(2)$ $0.2653(2)$ $0.15858(13)$ N3 $2i$ 1 $-0.0575(2)$ $0.2426(2)$ $0.04488(14)$ N4 $2i$ 1 $0.1595(2)$ $0.2975(2)$ $0.19343(14)$ N5 $2i$ 1 $-0.1644(2)$ $0.2511(2)$ $0.12344(15)$ N6 $2i$ 1 $0.0553(2)$ $0.2369(2)$ $-0.02779(14)$ P1 $2i$ 1 $0.14462(7)$ $0.31968(6)$ $0.26908(4)$ P2 $2i$ 1 $-0.24844(7)$ $0.24988(7)$ $0.07520(5)$ P3 $2i$ 1 $0.15325(7)$ $0.21922(7)$ $-0.04130(5)$ C1 $2i$ 1 $0.0835(3)$ $0.2751(2)$ $0.1445(2)$ C2 $2i$ 1 $-0.0745(3)$ $0.2528(2)$ $0.1080(2)$ C3 $2i$ 1 $0.03380(5)$ $0.24841(4)$ $0.03590(3)$ C4 $2i$ 1 $0.22793(5)$ $0.38356(4)$ $0.40700(3)$ C5 $2i$ 1 $0.22793(5)$ $0.38356(4)$ $0.40700(3)$ C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.42199(3)$ H6 $2i$ 1 $0.38724(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.45969(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.45969(5)$ $0.44893(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ $0.100(2)$	N1	2 <i>i</i>	1	0.1078(2)	0.2660(2)	0.08346(14)	
N3 $2i$ 1 $-0.0575(2)$ $0.2426(2)$ $0.04488(14)$ N4 $2i$ 1 $0.1595(2)$ $0.2975(2)$ $0.19343(14)$ N5 $2i$ 1 $-0.1644(2)$ $0.2511(2)$ $0.12344(15)$ N6 $2i$ 1 $0.0553(2)$ $0.2369(2)$ $-0.02779(14)$ P1 $2i$ 1 $0.14462(7)$ $0.31968(6)$ $0.26908(4)$ P2 $2i$ 1 $-0.24844(7)$ $0.24988(7)$ $0.07520(5)$ P3 $2i$ 1 $0.15325(7)$ $0.21922(7)$ $-0.04130(5)$ C1 $2i$ 1 $0.0835(3)$ $0.2751(2)$ $0.1445(2)$ C2 $2i$ 1 $-0.0745(3)$ $0.2528(2)$ $0.1080(2)$ C3 $2i$ 1 $0.03380(5)$ $0.24841(4)$ $0.03590(3)$ C4 $2i$ 1 $0.22793(5)$ $0.38356(4)$ $0.40700(3)$ C5 $2i$ 1 $0.22793(5)$ $0.38356(4)$ $0.40700(3)$ C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.38953(3)$ H5 $2i$ 1 $0.37802(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.44490(3)$ 0.09 C8 $2i$ 1 $0.4599(5)$ $0.442050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10	N2	2i	1	-0.0080(2)	0.2653(2)	0.15858(13)	
N4 $2i$ 1 $0.1595(2)$ $0.2975(2)$ $0.19343(14)$ N5 $2i$ 1 $-0.1644(2)$ $0.2511(2)$ $0.12344(15)$ N6 $2i$ 1 $0.0553(2)$ $0.2369(2)$ $-0.02779(14)$ P1 $2i$ 1 $0.14462(7)$ $0.31968(6)$ $0.26908(4)$ P2 $2i$ 1 $-0.24844(7)$ $0.24988(7)$ $0.07520(5)$ P3 $2i$ 1 $0.15325(7)$ $0.21922(7)$ $-0.04130(5)$ C1 $2i$ 1 $0.0835(3)$ $0.2751(2)$ $0.1445(2)$ C2 $2i$ 1 $-0.0745(3)$ $0.2528(2)$ $0.1080(2)$ C3 $2i$ 1 $0.03380(5)$ $0.24841(4)$ $0.03590(3)$ C4 $2i$ 1 $0.22857(5)$ $0.39282(4)$ $0.38528(3)$ H5 $2i$ 1 $0.22793(5)$ $0.38356(4)$ $0.40700(3)$ 0.07 C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.42199(3)$ H6 $2i$ 1 $0.37802(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.44409(3)$ 0.09 C8 $2i$ 1 $0.4590(5)$ $0.442050(4)$ $0.32035(3)$ 11 H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10	N3	2i	1	-0.0575(2)	0.2426(2)	0.04488(14)	
N5 $2i$ 1 $-0.1644(2)$ $0.2511(2)$ $0.12344(15)$ N6 $2i$ 1 $0.0553(2)$ $0.2369(2)$ $-0.02779(14)$ P1 $2i$ 1 $0.14462(7)$ $0.31968(6)$ $0.26908(4)$ P2 $2i$ 1 $-0.24844(7)$ $0.24988(7)$ $0.07520(5)$ P3 $2i$ 1 $0.15325(7)$ $0.21922(7)$ $-0.04130(5)$ C1 $2i$ 1 $0.0835(3)$ $0.2751(2)$ $0.1445(2)$ C2 $2i$ 1 $-0.0745(3)$ $0.2528(2)$ $0.1080(2)$ C3 $2i$ 1 $0.03380(5)$ $0.24841(4)$ $0.03590(3)$ C4 $2i$ 1 $0.26878(5)$ $0.36439(4)$ $0.31610(3)$ C5 $2i$ 1 $0.22793(5)$ $0.38326(4)$ $0.40700(3)$ 0.07 C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.42199(3)$ H6 $2i$ 1 $0.38724(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.4590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10	N4	2i	1	0.1595(2)	0.2975(2)	0.19343(14)	
N6 $2i$ 1 $0.0553(2)$ $0.2369(2)$ $-0.02779(14)$ P1 $2i$ 1 $0.14462(7)$ $0.31968(6)$ $0.26908(4)$ P2 $2i$ 1 $-0.24844(7)$ $0.24988(7)$ $0.07520(5)$ P3 $2i$ 1 $0.15325(7)$ $0.21922(7)$ $-0.04130(5)$ C1 $2i$ 1 $0.0835(3)$ $0.2751(2)$ $0.1445(2)$ C2 $2i$ 1 $-0.0745(3)$ $0.2528(2)$ $0.1080(2)$ C3 $2i$ 1 $0.03380(5)$ $0.24841(4)$ $0.03590(3)$ C4 $2i$ 1 $0.26878(5)$ $0.36439(4)$ $0.31610(3)$ C5 $2i$ 1 $0.2279(5)$ $0.39282(4)$ $0.38528(3)$ H5 $2i$ 1 $0.2279(5)$ $0.38356(4)$ $0.40700(3)$ 0.07 C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.42199(3)$ H6 $2i$ 1 $0.38724(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.4590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10	N5	2i	1	-0.1644(2)	0.2511(2)	0.12344(15)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N6	2i	1	0.0553(2)	0.2369(2)	-0.02779(14)	
P2 $2i$ 1 $-0.24844(7)$ $0.24988(7)$ $0.07520(5)$ P3 $2i$ 1 $0.15325(7)$ $0.21922(7)$ $-0.04130(5)$ C1 $2i$ 1 $0.0835(3)$ $0.2751(2)$ $0.1445(2)$ C2 $2i$ 1 $-0.0745(3)$ $0.2528(2)$ $0.1080(2)$ C3 $2i$ 1 $0.03380(5)$ $0.24841(4)$ $0.03590(3)$ C4 $2i$ 1 $0.26878(5)$ $0.36439(4)$ $0.31610(3)$ C5 $2i$ 1 $0.22793(5)$ $0.39282(4)$ $0.38528(3)$ H5 $2i$ 1 $0.22793(5)$ $0.38356(4)$ $0.40700(3)$ 0.07 C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.42199(3)$ H6 $2i$ 1 $0.38724(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.4590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10	P1	2i	1	0.14462(7)	0.31968(6)	0.26908(4)	
P3 $2i$ 1 $0.15325(7)$ $0.21922(7)$ $-0.04130(5)$ C1 $2i$ 1 $0.0835(3)$ $0.2751(2)$ $0.1445(2)$ C2 $2i$ 1 $-0.0745(3)$ $0.2528(2)$ $0.1080(2)$ C3 $2i$ 1 $0.03380(5)$ $0.24841(4)$ $0.03590(3)$ C4 $2i$ 1 $0.26878(5)$ $0.36439(4)$ $0.31610(3)$ C5 $2i$ 1 $0.22793(5)$ $0.39282(4)$ $0.38528(3)$ H5 $2i$ 1 $0.22793(5)$ $0.38356(4)$ $0.40700(3)$ 0.07 C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.42199(3)$ H6 $2i$ 1 $0.38724(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.50054(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10 C9 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10	P2	2i	1	-0.24844(7)	0.24988(7)	0.07520(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Р3	2i	1	0.15325(7)	0.21922(7)	-0.04130(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	2i	1	0.0835(3)	0.2751(2)	0.1445(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	2i	1	-0.0745(3)	0.2528(2)	0.1080(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	2i	1	0.03380(5)	0.24841(4)	0.03590(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	2i	1	0.26878(5)	0.36439(4)	0.31610(3)	
H5 $2i$ 1 $0.22793(5)$ $0.38356(4)$ $0.40700(3)$ 0.07 C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.42199(3)$ H6 $2i$ 1 $0.38724(5)$ $0.45412(4)$ $0.46827(3)$ 0.09 C7 $2i$ 1 $0.45969(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.4590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10 C9 $2i$ 1 $0.50054(5)$ $0.37823(4)$ $0.29862(3)$ 0.10	C5	2i	1	0.28257(5)	0.39282(4)	0.38528(3)	
C6 $2i$ 1 $0.37802(5)$ $0.43509(4)$ $0.42199(3)$ H6 $2i$ 1 $0.38724(5)$ $0.45412(4)$ $0.46827(3)$ 0.09 C7 $2i$ 1 $0.45969(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.4590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42077(4)$ $0.29862(3)$ 0.10 C9 $2i$ 1 $0.5005(5)$ $0.37873(4)$ $0.29862(3)$ 0.10	H5	2i	1	0.22793(5)	0.38356(4)	0.40700(3)	0.0730
H6 $2i$ 1 $0.38724(5)$ $0.45412(4)$ $0.46827(3)$ 0.09 C7 $2i$ 1 $0.45969(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.44590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42077(4)$ $0.29862(3)$ 0.10 C9 $2i$ 1 $0.50054(5)$ $0.37823(4)$ $0.29264(3)$	C6	2i	1	0.37802(5)	0.43509(4)	0.42199(3)	
C7 $2i$ 1 $0.45969(5)$ $0.44893(4)$ $0.38953(3)$ H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.44590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10 C9 $2i$ 1 $0.35045(5)$ $0.37832(4)$ $0.28364(3)$	H6	2i	1	0.38724(5)	0.45412(4)	0.46827(3)	0.0910
H7 $2i$ 1 $0.52355(5)$ $0.47721(4)$ $0.41409(3)$ 0.09 C8 $2i$ 1 $0.44590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10 C9 $2i$ 1 $0.35045(5)$ $0.37823(4)$ $0.28364(3)$	C7	2i	1	0.45969(5)	0.44893(4)	0.38953(3)	
C8 $2i$ 1 $0.44590(5)$ $0.42050(4)$ $0.32035(3)$ H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10 C9 $2i$ 1 $0.35045(5)$ $0.37832(4)$ $0.28364(3)$	H7	2i	1	0.52355(5)	0.47721(4)	0.41409(3)	0.0990
H8 $2i$ 1 $0.50054(5)$ $0.42977(4)$ $0.29862(3)$ 0.10 C9 $2i$ 1 $0.3504(5)$ $0.37832(4)$ $0.28364(3)$	C8	2i	1	0.44590(5)	0.42050(4)	0.32035(3)	
C9 2 <i>i</i> 1 0.35045(5) 0.37823(4) 0.28364(3)	H8	2i	1	0.50054(5)	0.42977(4)	0.29862(3)	0.1000
-2i 1 $0.55045(5)$ $0.57625(4)$ $0.26504(5)$	C9	2i	1	0.35045(5)	0.37823(4)	0.28364(3)	

H9	2 <i>i</i>	1	0.34122(5)	0.35921(4)	0.23735(3)	0.0770
C10	2 <i>i</i>	1	0.09776(5)	0.40402(4)	0.30518(3)	
C11	2i	1	-0.00352(5)	0.38329(4)	0.30207(3)	
H11	2i	1	-0.04829(5)	0.32527(4)	0.28554(3)	0.0670
C12	2i	1	-0.03789(5)	0.44927(4)	0.32366(3)	
H12	2i	1	-0.10566(5)	0.43540(4)	0.32156(3)	0.0880
C13	2i	1	0.02902(5)	0.53599(4)	0.34838(3)	
H13	2i	1	0.00602(5)	0.58014(4)	0.36283(3)	0.0980
C14	2i	1	0.13030(5)	0.55672(4)	0.35149(3)	
H14	2i	1	0.17506(5)	0.61474(4)	0.36801(3)	0.0930
C15	2i	1	0.16467(5)	0.49074(4)	0.32990(3)	
H15	2i	1	0.23243(5)	0.50462(4)	0.33199(3)	0.0700
C16	2i	1	0.07510(5)	0.22498(4)	0.28922(3)	
C17	2i	1	0.03814(5)	0.23350(4)	0.34870(3)	
H17	2i	1	0.04544(5)	0.28820(4)	0.37767(3)	0.0600
C18	2i	1	-0.00974(5)	0.16025(4)	0.36488(3)	
H18	2i	1	-0.03446(5)	0.16595(4)	0.40468(3)	0.0690
C19	2i	1	-0.02067(5)	0.07850(4)	0.32156(3)	0.0500
H19	2i	1	-0.05272(5)	0.02950(4)	0.33237(3)	0.0780
C20	2i	1	0.01629(5)	0.06998(4)	0.2620/(3)	0.0700
H20	21	1	0.00898(5)	0.01528(4)	0.23309(3)	0.0790
C21	2i	1	0.06417(5)	0.14322(4)	0.24590(3)	0.0650
H21	21	1	0.08889(5)	0.13/53(4)	0.20609(3)	0.0650
C22	21	1	-0.34440(5)	0.25460(4)	0.12448(3)	
C23	21	1	-0.32564(5)	0.26985(4)	0.19206(3)	0 1020
H23	21	1	-0.26384(5)	0.27785(4)	0.21142(3)	0.1020
C24	21	1	-0.39924(3)	0.2/314(4) 0.28225(4)	0.23009(3)	0 1 4 5 0
H24 C25	21	1	-0.38009(3)	0.28555(4)	0.27590(5) 0.20174(2)	0.1450
U25	21	1	-0.49100(3)	0.20110(4)	0.20174(3)	0 1200
П23 С26	21	1	-0.34083(3)	0.20556(4) 0.24502(4)	0.22738(3) 0.12417(2)	0.1290
U20	21	1	-0.31037(3) 0.57217(5)	0.24393(4) 0.22703(4)	0.1341/(3) 0.11480(3)	0 1 1 1 0
C27	21	1	-0.37217(3)	0.23793(4)	0.11460(3)	0.1110
U27 H27	$\frac{2i}{2i}$	1	-0.43077(3) 0.44933(5)	0.24204(4) 0.23244(4)	0.09334(3) 0.05032(3)	0.0850
C28	21 2i	1	-0.44933(3) 0.21726(5)	0.23244(4) 0.23278(4)	0.03032(3)	0.0850
C28	$\frac{2i}{2i}$	1	-0.21720(3) 0.25214(5)	0.33878(4) 0.40391(4)	0.04441(3) 0.06057(3)	
H20	21 2i	1	-0.23214(3) 0.29563(5)	0.40391(4) 0.30003(4)	0.00937(3) 0.10004(3)	0.0780
C30	2i	1	-0.29303(3) -0.22201(5)	0.39993(4) 0.47500(4)	0.10004(3) 0.04917(3)	0.0780
H30	2i	1	-0.22201(5)	0.47500(4) 0.51858(4)	0.04917(3) 0.06599(3)	0 1000
C31	21 2i	1	-0.24550(5) 0.15700(5)	0.31838(4) 0.48096(4)	0.00399(3)	0.1000
H31	2i	1	-0.13700(3) -0.13684(5)	0.48090(4) 0.52853(4)	-0.01001(3)	0.0980
C32	2i 2i	1	-0.12212(5)	0.32033(4) 0.41582(4)	-0.02153(3)	0.0700
H32	$\frac{2i}{2i}$	1	-0.07863(5)	0.41981(4)	-0.02133(3) -0.05201(3)	0.0850
C33	2i 2i	1	-0.15225(5)	0.34473(4)	-0.00114(3)	0.0050
H33	$\frac{2i}{2i}$	1	-0.12892(5)	0.30115(4)	-0.01798(3)	0.0670
C34	2 <i>i</i>	1	-0.31471(5)	0.15137(4)	0.00375(3)	0.0070
C35	$\frac{2i}{2i}$	1	-0.34021(5)	0.07290(4)	0.00375(3)	
H35	2i	1	-0.31984(5)	0.07267(4)	0.05495(3)	0.1140
C36	2i	1	-0.39616(5)	-0.00523(4)	-0.03783(3)	
H36	2i	1	-0.41322(5)	-0.05773(4)	-0.03114(3)	0.1420
C37	2i	1	-0.42662(5)	-0.00488(4)	-0.09941(3)	
H37	2i	1	-0.46406(5)	-0.05715(4)	-0.13392(3)	0.1190
C38	2i	1	-0.40112(5)	0.07359(4)	-0.10941(3)	
H38	2i	1	-0.42150(5)	0.07382(4)	-0.15062(3)	0.1310
C39	2 <i>i</i>	1	-0.34517(5)	0.15172(4)	-0.05784(3)	
H39	2 <i>i</i>	1	-0.32812(5)	0.20423(4)	-0.06454(3)	0.1100
C40	2 <i>i</i>	1	0.27289(5)	0.31199(4)	-0.00089(3)	
C41	2i	1	0.27581(5)	0.39354(4)	0.03663(3)	
H41	2i	1	0.21706(5)	0.40159(4)	0.04178(3)	0.0870
C42	2i	1	0.36653(5)	0.46306(4)	0.06644(3)	
H42	2i	1	0.36848(5)	0.51762(4)	0.09154(3)	0.1080
C43	2i	1	0.45434(5)	0.45103(4)	0.05873(3)	
H43	2i	1	0.51504(5)	0.49754(4)	0.07867(3)	0.0970
C44	2i	1	0.45142(5)	0.36949(4)	0.02121(3)	
H44	2i	1	0.51017(5)	0.36145(4)	0.01604(3)	0.0960
C45	2i	1	0.36070(5)	0.29997(4)	-0.00860(3)	0.05-
H45	2i	1	0.35875(5)	0.24542(4)	-0.03371(3)	0.0790
C46	2i	1	0.15377(5)	0.19563(4)	-0.12953(3)	
C47	2 <i>i</i>	1	0.10352(5)	0.22868(4)	-0.16197(3)	0.0770
H4/	21	1	0.06845(5)	0.25981(4)	-0.138/4(3)	0.0770
C48	21	1	0.10569(5)	0.21520(4)	-0.22913(3)	0.0000
H48	21	1	0.0/20/(5)	0.23/32(4)	-0.25084(3)	0.0990
U49	21	1	0.15810(5)	0.10800(4)	-0.20380(3)	0.0040
П49 С50	21 2;	1	0.13934(3) 0.20935(5)	0.13904(4)	-0.30880(3)	0.0840
U30 H50	21	1	0.20033(3) 0.24242(5)	0.15501(4) 0.10449(4)	-0.23142(3)	0.0720
1150	$\angle l$	1	0.24342(3)	0.10440(4)	-0.23400(3)	0.0730
C51	2 <i>i</i>	0.20618(5)	0.14910(4)	-0.16426(3)		
-------------	------------	---------------	--------------------------	---------------------------	-----------	
H51	2 <i>i</i>	0.23980(5)	0.12699(4)	-0.14256(3)	0.0630	
C52	2 <i>i</i>	0 15430(5)	0.12599(4)	-0.02416(3)		
C53	21	0.09676(5)	0.12375(1)	0.06023(3)		
1152	21	0.05070(5)	0.04273(4)	-0.00923(3)	0.0720	
П 33	21	1 0.00412(3)	0.03330(4)	-0.109/1(3)	0.0720	
C54	21	0.08801(5)	-0.029/5(4)	-0.05380(3)		
H54	2 <i>i</i>	1 0.04951(5)	-0.08545(4)	-0.08396(3)	0.0880	
C55	2 <i>i</i>	0.13679(5)	-0.01899(4)	0.00669(3)		
H55	2 <i>i</i>	0.13092(5)	-0.06749(4)	0.01701(3)	0.0910	
C56	2 <i>i</i>	0.19434(5)	0.06426(4)	0.05176(3)		
H56	2i	0.22698(5)	0.07146(4)	0.09223(3)	0.0850	
C57	21	0.22000(5)	0.07110(1) 0.13675(4)	0.03633(3)	0.0020	
1157	21	0.20509(5)	0.13075(4)	0.03033(3)	0.0(20	
H5/	21	0.24159(5)	0.19245(4)	0.0004/(3)	0.0630	
NIA	21	-0.0677(2)	0.2317(2)	0.54084(14)		
N2A	2 <i>i</i>	1 -0.2372(2)	0.1943(2)	0.55493(14)		
N3A	2 <i>i</i>	1 -0.1121(2)	0.2358(2)	0.64709(14)		
N4A	2 <i>i</i>	1 -0.1880(2)	0.1883(2)	0.45103(14)		
N5A	2 <i>i</i>	-0.2767(2)	0.2120(2)	0 65977(14)		
N6A	2i	0.0518(2)	0.2790(2)	0.63473(15)		
DIA	2:	0.0910(2)	0.2790(2) 0.12200(7)	0.03473(13)		
F IA	21	-0.29624(7)	0.13290(7)	0.41101(3)		
P2A	21	-0.24502(7)	0.24247(7)	0.73817(5)		
P3A	21	0.14104(7)	0.30635(7)	0.59582(5)		
C1A	2 <i>i</i>	1 -0.1650(3)	0.2041(2)	0.5173(2)		
C2A	2 <i>i</i>	1 -0.2064(3)	0.2133(2)	0.6198(2)		
C3A	2 <i>i</i>	1 -0.04602(5)	0.24787(4)	0.60612(3)		
C4A	2 <i>i</i>	-0.38302(5)	0.18822(4)	0.42325(3)		
C5A	2i	-0.45986(5)	0.16575(4)	0.37281(3)		
H5A	21	0.17046(5)	0.10070(1) 0.12027(4)	0.37201(3)	0 1310	
CGA	21	-0.47040(3)	0.12027(4) 0.21125(4)	0.33272(3)	0.1510	
COA	21		0.21123(4)	0.38228(3)	0 1 5 2 0	
H6A	21	-0.5/22/(5)	0.19622(4)	0.34853(3)	0.1530	
C7A	2 <i>i</i>	-0.50503(5)	0.27921(4)	0.44219(3)		
H7A	2 <i>i</i>	1 -0.54584(5)	0.30965(4)	0.44852(3)	0.1240	
C8A	2 <i>i</i>	1 -0.42820(5)	0.30168(4)	0.49264(3)		
H8A	2 <i>i</i>	-0.41762(5)	0.34715(4)	0.53273(3)	0.1100	
C9A	2i	-0.36719(5)	0.25619(4)	0.48317(3)		
НОЛ	21	-0.31578(5)	0.23019(1) 0.27122(4)	0.10517(3) 0.51692(3)	0.0850	
CIOA	21	-0.51576(5)	0.27122(4) 0.10200(4)	0.31072(3)	0.0050	
CIUA	21	-0.28933(3)	0.10309(4)	0.32377(3)		
CIIA	21	-0.21840(5)	0.16242(4)	0.30262(3)		
HIIA	2i	I -0.17712(5)	0.21690(4)	0.33324(3)	0.0710	
C12A	2 <i>i</i>	1 -0.20895(5)	0.14032(4)	0.23570(3)		
H12A	2 <i>i</i>	1 -0.16136(5)	0.18002(4)	0.22155(3)	0.0890	
C13A	2 <i>i</i>	1 -0.27064(5)	0.05887(4)	0.18994(3)		
H13A	2 <i>i</i>	-0.26432(5)	0.04407(4)	0.14517(3)	0.0880	
C14A	2i	-0.34177(5)	-0.00046(4)	0.21110(3)		
	21	-0.38304(5)	-0.05496(4)	0.18049(3)	0.0910	
C15 A	21	-0.3650+(5)	-0.03+90(+)	0.10049(3)	0.0710	
UI5A	21	-0.35122(5)	0.02105(4)	0.27801(3)	0.0740	
HISA	21	-0.39882(5)	-0.01805(4)	0.29216(3)	0.0740	
C16A	2 <i>i</i>	1 -0.35717(5)	0.02987(4)	0.42352(3)		
C17A	2 <i>i</i>	1 -0.45759(5)	-0.00849(4)	0.42598(3)		
H17A	2 <i>i</i>	1 -0.49891(5)	0.01947(4)	0.42237(3)	0.0780	
C18A	2 <i>i</i>	-0.49625(5)	-0.08865(4)	0.43384(3)		
H18A	2i	-0.56344(5)	-0.11433(4)	0.43548(3)	0.0980	
C19A	21	-0.43449(5)	-0.13044(4)	0.43925(3)	0.0900	
	2;	0.45449(5)	0.13044(4) 0.18407(4)	0.43723(3) 0.44452(3)	0 1 1 2 0	
C20A	21	-0.40030(3)	-0.16407(4)	0.44432(3) 0.42(70(2))	0.1150	
C20A	21	-0.33407(5)	-0.09208(4)	0.436/9(3)		
H20A	2i	I –0.29275(5)	-0.12004(4)	0.44041(3)	0.1180	
C21A	2 <i>i</i>	1 -0.29541(5)	-0.01192(4)	0.42892(3)		
H21A	2 <i>i</i>	1 -0.22822(5)	0.01374(4)	0.42727(3)	0.0950	
C22A	2 <i>i</i>	-0.15085(5)	0.35033(4)	0.78088(3)		
C23A	2 <i>i</i>	-0.05092(5)	0.36496(4)	0.78898(3)		
H23A	2i	-0.03215(5)	0.31810(4)	0.77597(3)	0.0650	
C24A	2i	0.03215(3)	0.31010(4) 0.44062(4)	0.77577(3)	0.0050	
U24A	21	0.02090(3)	0.44902(4)	0.81032(3)	0.0940	
H24A	21	1 0.08/82(5)	0.45940(4)	0.82193(3)	0.0840	
C25A	21	-0.00/09(5)	0.51965(4)	0.83597(3)		
H25A	2 <i>i</i>	0.04100(5)	0.57629(4)	0.85440(3)	0.0930	
C26A	2 <i>i</i>	1 -0.10702(5)	0.50502(4)	0.82787(3)		
H26A	2 <i>i</i>	1 -0.12579(5)	0.55187(4)	0.84088(3)	0.0860	
C27A	2 <i>i</i>	-0.17890(5)	0.42036(4)	0.80033(3)		
H27A	2i	-0.24576(5)	0.41057(4)	0 79492(3)	0.0680	
C28A	_; 2i		0 24667(4)	0.77410(3)	5.0000	
C20A	2;	-0.33+30(3)	0.27007(4)	0.77410(3)		
C27A	21	-0.44212(5)	0.22400(4)	0.75278(3)	0.0700	
H29A	21	-0.44546(5)	0.20476(4)	0.68677(3)	0.0780	
C30A	21	-0.52468(5)	0.23029(4)	0.76024(3)		
H30A	2 <i>i</i>	1 -0.58326(5)	0.21516(4)	0.73260(3)	0.0960	
C31A	2 <i>i</i>	1 -0.51969(5)	0.25913(4)	0.82900(3)		
H31A	2 <i>i</i>	1 -0.57493(5)	0.26329(4)	0.84737(3)	0.0910	
		. (-)	()	(-)		

	T T	T 7	U	U	U I	7
H57A	2 <i>i</i>	1	0.33535(5)	0.30300(4)	0.59397(3)	0.0830
C57A	2i	1	0.33500(5)	0.33346(4)	0.63818(3)	
H56A	2i	1	0.47618(5)	0.35880(4)	0.67347(3)	0.1150
C56A	2i	1	0.41938(5)	0.36690(4)	0.68581(3)	
H55A	2i	1	0.47530(5)	0.43481(4)	0.78375(3)	0.1250
C55A	2i	1	0.41885(5)	0.41244(4)	0.75188(3)	
H54A	2i	1	0.33360(5)	0.45502(4)	0.81452(3)	0.1310
C54A	2i	1	0.33395(5)	0.42454(4)	0.77032(3)	
H53A	2i	1	0.19278(5)	0.39917(4)	0.73504(3)	0.0970
C53A	2i	1	0.24958(5)	0.39109(4)	0.72270(3)	
C52A	2i	1	0.25010(5)	0.34555(4)	0.65663(3)	
H51A	2i	1	0.06852(5)	0.12426(4)	0.55993(3)	0.0840
C51A	2i	1	0.10488(5)	0.13465(4)	0.52673(3)	
H50A	2 <i>i</i>	1	0.08383(5)	0.00945(4)	0.47671(3)	0.1110
C50A	2i	1	0.11405(5)	0.06586(4)	0.47687(3)	
H49A	2 <i>i</i>	1	0.17453(5)	0.03537(4)	0.39389(3)	0.1120
C49A	2i	1	0.16840(5)	0.08139(4)	0.42725(3)	
H48A	21	1	0.24995(5)	0.17607(4)	0.39431(3)	0.1010
C48A	21	1	0.21358(5)	0.16569(4)	0.42750(3)	0.1010
H47A	21	1	0.23464(5)	0.29088(4)	0.47752(3)	0.0800
C47A	21	1	0.20441(5)	0.23448(4)	0.47736(3)	0.0000
C46A	21	1	0.15006(5)	0.21896(4)	0.52697(3)	
H45A	21	1	0.28500(5)	0.48405(4)	0.63031(3)	0.0760
C45A	21	1	0.23846(5)	0.47650(4)	0.59623(3)	0.07(0
H44A	21	1	0.30184(5)	0.598/1(4)	0.59537(3)	0.0950
U44A	21	1	0.24855(5)	0.54520(4)	0.57530(3)	0.0050
H43A	21	1	0.18575(5)	0.57988(4)	0.51030(3)	0.0900
U43A	21	1	0.1/899(5)	0.55591(4)	0.52430(3)	0.0000
H42A	21	1	0.05283(5) 0.17800(5)	0.44030(4) 0.52201(4)	0.46026(3) 0.52426(3)	0.0740
U42A	21	1	0.09930(3)	0.43392(4)	0.49455(5)	0.0740
H41A	21	1	0.03399(5)	0.33170(4) 0.45202(4)	0.49520(3)	0.0010
U41A	21	1	0.08927(3)	0.38322(4) 0.22170(4)	0.31326(3) 0.40520(2)	0.0(10
C40A C41A	21	1	0.13883(3) 0.08027(5)	0.39031(4) 0.38522(4)	0.30023(3) 0.51528(3)	
П39А С40А	21	1	-0.15558(5)	0.24/10(4) 0.20651(4)	0.83343(3) 0.56622(2)	0.0710
U20A	21	1	-0.10212(3)	0.18924(4) 0.24718(4)	0.820/2(3)	0.0710
П36А С20А	21	1	-0.11299(3)	0.1418/(4) 0.18024(4)	0.88813(3)	0.0910
U38A	21	1	-0.14858(5)	0.12015(4) 0.14187(4)	0.84033(3)	0.0010
H3/A	21	1	-0.1/918(5)	-0.0026/(4)	0.81654(3)	0.1020
U27A	21	1	-0.18624(3)	0.03933(4)	0.80342(3)	0 1020
C27A	21	1	-0.20790(3)	-0.04191(4)	0.71221(3)	0.1140
U26A	21	1	-0.24143(3)	0.01004(4)	0.74091(3) 0.71221(2)	0 1140
П33А С26А	21	1	-0.29033(3)	0.00340(4) 0.01604(4)	0.07947(3) 0.74001(3)	0.0800
U25A	21	1	-0.23497(3)	0.07913(4) 0.06340(4)	0.72130(3) 0.67047(3)	0.0860
C34A	21	1	-0.21332(3)	0.10374(4) 0.07012(4)	0.70421(3) 0.72120(3)	
П33А С24А	21	1	-0.29101(3) 0.21532(5)	0.29003(4) 0.16574(4)	0.87031(3) 0.76421(3)	0.0870
U22A	21	1	-0.34939(3)	0.27332(4) 0.20065(4)	0.84287(3)	0.0070
H32A	21	1	-0.42882(5)	0.30105(4) 0.27552(4)	0.91033(3)	0.0970
U32A	21	1	-0.43213(3)	0.28173(4) 0.20105(4)	0.87032(3)	0.0070
C32A	21	1	-0.43215(5)	0.28175(4)	0.87032(3)	

Atom	<i>U</i> ₁₁	U22	<i>U</i> 33	<i>U</i> ₁₂	<i>U</i> ₁₃	U23
N1	0.044(2)	0.052(2)	0.029(2)	0.0229(15)	0.0095(13)	0.0151(14)
N2	0.036(2)	0.048(2)	0.030(2)	0.0194(14)	0.0060(13)	0.0133(13)
N3	0.042(2)	0.047(2)	0.030(2)	0.0204(14)	0.0069(13)	0.0140(13)
N4	0.040(2)	0.056(2)	0.029(2)	0.022(2)	0.0064(13)	0.0125(14)
N5	0.036(2)	0.056(2)	0.041(2)	0.0212(15)	0.0092(14)	0.020(2)
N6	0.047(2)	0.061(2)	0.029(2)	0.027(2)	0.0102(13)	0.0185(15)
P1	0.0395(5)	0.0485(6)	0.0291(5)	0.0204(4)	0.0048(4)	0.0125(4)
P2	0.0384(5)	0.0507(6)	0.0391(5)	0.0186(5)	0.0052(4)	0.0150(5)
P3	0.0423(5)	0.0494(6)	0.0319(5)	0.0205(5)	0.0085(4)	0.0169(4)
C1	0.042(2)	0.039(2)	0.028(2)	0.020(2)	0.006(2)	0.011(2)
C2	0.040(2)	0.034(2)	0.035(2)	0.015(2)	0.009(2)	0.012(2)
C3	0.043(2)	0.042(2)	0.030(2)	0.021(2)	0.009(2)	0.015(2)
C4	0.045(2)	0.046(2)	0.038(2)	0.018(2)	0.000(2)	0.014(2)
C5	0.054(3)	0.083(3)	0.044(2)	0.022(2)	-0.001(2)	0.028(2)
C6	0.072(3)	0.090(4)	0.048(3)	0.019(3)	-0.012(2)	0.021(3)
C7	0.055(3)	0.093(4)	0.076(4)	0.017(3)	-0.016(3)	0.018(3)
C8	0.048(3)	0.103(4)	0.075(3)	0.017(3)	0.006(2)	0.019(3)
C9	0.048(3)	0.081(3)	0.051(3)	0.022(2)	0.004(2)	0.012(2)
C10	0.061(3)	0.053(2)	0.029(2)	0.030(2)	0.010(2)	0.017(2)
C11	0.063(3)	0.072(3)	0.048(2)	0.041(2)	0.021(2)	0.025(2)
C12	0.090(4)	0.097(4)	0.069(3)	0.068(3)	0.036(3)	0.037(3)
C13	0.130(5)	0.087(4)	0.065(3)	0.078(4)	0.040(3)	0.031(3)
C14	0.129(5)	0.056(3)	0.057(3)	0.047(3)	0.020(3)	0.023(2)
C15	0.075(3)	0.051(3)	0.048(2)	0.025(2)	0.007(2)	0.017(2)

C16	0.037(2)	0.050(2)	0.035(2)	0.019(2)	0.004(2)	0.015(2)
C17	0.057(2)	0.050(2)	0.033(2)	0.019(2)	0.004(2)	0.015(2)
C17	0.034(2)	0.034(2)	0.044(2)	0.024(2)	0.014(2)	0.010(2)
C18	0.039(3)	0.000(3)	0.049(2)	0.022(2)	0.010(2)	0.023(2)
019	0.065(3)	0.05/(3)	0.063(3)	0.013(2)	0.004(2)	0.026(2)
C20	0.084(3)	0.046(3)	0.058(3)	0.021(2)	0.005(2)	0.013(2)
C21	0.068(3)	0.057(3)	0.037(2)	0.029(2)	0.011(2)	0.009(2)
C22	0.045(2)	0.053(2)	0.057(3)	0.022(2)	0.012(2)	0.016(2)
C23	0.067(3)	0.129(5)	0.058(3)	0.051(3)	0.022(3)	0.020(3)
C24	0.103(5)	0.186(8)	0.081(4)	0.082(5)	0.045(4)	0.026(4)
C25	0.082(4)	0.127(5)	0.116(5)	0.056(4)	0.056(4)	0.028(4)
C26	0.052(3)	0.093(4)	0.125(5)	0.037(3)	0.018(3)	0.020(4)
C27	0.052(3)	0.093(3)	0.083(3)	0.037(3)	0.010(3)	0.026(3)
C29	0.040(3)	0.003(3)	0.003(3)	0.027(2)	0.010(2)	0.020(3)
C28	0.049(2)	0.049(2)	0.043(2)	0.017(2)	-0.003(2)	0.013(2)
C29	0.070(3)	0.062(3)	0.068(3)	0.029(2)	0.006(2)	0.027(2)
C30	0.099(4)	0.0/4(3)	0.096(4)	0.049(3)	0.015(3)	0.039(3)
C31	0.084(4)	0.081(4)	0.098(4)	0.032(3)	0.008(3)	0.055(3)
C32	0.069(3)	0.086(4)	0.069(3)	0.029(3)	0.006(2)	0.044(3)
C33	0.060(3)	0.065(3)	0.046(2)	0.024(2)	0.000(2)	0.025(2)
C34	0.039(2)	0.062(3)	0.047(2)	0.019(2)	0.005(2)	0.012(2)
C35	0.114(5)	0.056(3)	0.092(4)	0.026(3)	-0.031(4)	0.012(3)
C36	0.130(6)	0.060(4)	0.123(6)	0.025(4)	-0.034(5)	0.001(4)
C37	0.076(4)	0.085(4)	0.087(4)	0.023(3)	-0.006(3)	-0.019(3)
C38	0.070(4)	0.003(4)	0.007(4)	0.025(3)	0.000(3)	0.017(3)
C30	0.100(3)	0.111(3)	0.000(3)	0.003(+)	-0.000(3)	0.003(3)
C39	0.090(4)	0.060(4)	0.032(3)	-0.003(3)	-0.010(3)	0.023(3)
C40	0.04/(2)	0.062(3)	0.040(2)	0.018(2)	0.008(2)	0.026(2)
C41	0.074(3)	0.055(3)	0.088(4)	0.028(3)	0.006(3)	0.022(3)
C42	0.086(4)	0.050(3)	0.105(4)	0.009(3)	0.003(3)	0.016(3)
C43	0.063(3)	0.080(4)	0.069(3)	-0.002(3)	0.000(3)	0.024(3)
C44	0.049(3)	0.107(4)	0.067(3)	0.018(3)	0.010(2)	0.026(3)
C45	0.051(3)	0.073(3)	0.059(3)	0.019(2)	0.011(2)	0.014(2)
C46	0.044(2)	0.052(2)	0.034(2)	0.018(2)	0.011(2)	0.017(2)
C47	0.080(3)	0.095(4)	0.051(3)	0.057(3)	0.029(2)	0.040(3)
C48	0.000(3) 0.115(4)	0.093(1) 0.127(5)	0.031(3)	0.037(3)	0.027(2)	0.040(3)
C40	0.113(4) 0.086(3)	0.127(3)	0.040(3)	0.077(4)	0.027(3)	0.049(3)
C49	0.080(3)	0.092(4)	0.037(2)	0.030(3)	0.023(2)	0.029(2)
C50	0.058(3)	0.072(3)	0.044(2)	0.022(2)	0.022(2)	0.013(2)
C51	0.050(2)	0.066(3)	0.043(2)	0.028(2)	0.015(2)	0.017(2)
C52	0.044(2)	0.050(2)	0.040(2)	0.020(2)	0.011(2)	0.020(2)
C53	0.068(3)	0.054(3)	0.051(3)	0.017(2)	0.006(2)	0.017(2)
C54	0.083(3)	0.044(3)	0.079(3)	0.014(2)	0.012(3)	0.019(2)
C55	0.095(4)	0.061(3)	0.083(4)	0.032(3)	0.017(3)	0.040(3)
C56	0.093(4)	0.073(3)	0.063(3)	0.040(3)	0.008(3)	0.040(3)
C57	0.059(3)	0.053(2)	0.051(2)	0.024(2)	0.006(2)	0.023(2)
NIA	0.033(2)	0.059(2)	0.034(2)	0.0121(15)	0.0070(13)	0.0178(15)
N2A	0.035(2)	0.063(2)	0.031(2)	0.0121(10)	0.0090(13)	0.0199(15)
N3 A	0.035(2)	0.003(2)	0.031(2)	0.013(2)	0.0090(13)	0.0177(13)
NAA	0.030(2)	0.032(2)	0.032(2)	0.0110(14)	0.0030(13)	0.0101(14)
IN4A	0.037(2)	0.071(2)	0.030(2)	0.013(2)	0.0072(13)	0.021(2)
N5A	0.038(2)	0.062(2)	0.032(2)	0.015(2)	0.0096(13)	0.0169(15)
N6A	0.035(2)	0.059(2)	0.037(2)	0.015(2)	0.0079(13)	0.018(2)
PIA	0.0370(5)	0.0656(7)	0.0347(5)	0.0153(5)	0.0081(4)	0.0209(5)
P2A	0.0376(5)	0.0491(6)	0.0310(5)	0.0143(4)	0.0094(4)	0.0148(4)
P3A	0.0343(5)	0.0556(6)	0.0365(5)	0.0145(5)	0.0059(4)	0.0182(5)
C1A	0.041(2)	0.049(2)	0.033(2)	0.011(2)	0.007(2)	0.015(2)
C2A	0.037(2)	0.046(2)	0.031(2)	0.011(2)	0.008(2)	0.013(2)
C3A	0.037(2)	0.045(2)	0.033(2)	0.012(2)	0.005(2)	0.014(2)
C4A	0.046(2)	0.081(3)	0.060(3)	0.024(2)	0.019(2)	0.037(3)
C5A	0.081(4)	0.160(6)	0.000(2)	0.02.1(2)	0.013(2)	0.029(4)
CGA	0.001(4)	0.100(0)	0.074(4)	0.074(4)	0.003(3)	0.027(4)
COA	0.089(3)	0.100(0)	0.143(7)	0.069(3)	0.014(4)	0.008(0)
C/A	0.091(4)	0.114(3)	0.134(7)	0.004(4)	0.001(3)	0.079(3)
C8A	0.106(5)	0.080(4)	0.119(5)	0.052(4)	0.04/(4)	0.054(4)
C9A	0.079(3)	0.065(3)	0.084(4)	0.035(3)	0.023(3)	0.038(3)
C10A	0.040(2)	0.068(3)	0.037(2)	0.020(2)	0.003(2)	0.023(2)
C11A	0.058(3)	0.072(3)	0.040(2)	0.014(2)	0.005(2)	0.024(2)
C12A	0.084(3)	0.098(4)	0.051(3)	0.034(3)	0.022(3)	0.043(3)
C13A	0.095(4)	0.098(4)	0.039(2)	0.047(3)	0.016(2)	0.030(3)
C14A	0.091(4)	0.082(4)	0.041(3)	0.032(3)	0.000(2)	0.008(2)
C15A	0.064(3)	0.070(3)	0.042(2)	0.017(2)	0.007(2)	0.021(2)
C16A	0.001(3)	0.070(3)	0.035(2)	0.009(2)	0.005(2)	0.021(2)
C17A	0.051(2)	0.070(3)	0.033(2)	0.009(2)	0.003(2)	0.021(2)
C1/A C10A	0.031(3)	0.074(3)	0.042(2)	0.000(2)	0.000(2)	0.007(2)
CIOA	0.0/1(3)	0.072(3)	0.043(3)	-0.01/(3)	0.010(2)	0.003(2)
CI9A	0.110(5)	0.080(4)	0.070(4)	0.008(4)	0.008(3)	0.033(3)
C20A	0.093(4)	0.090(4)	0.114(5)	0.021(3)	-0.009(4)	0.058(4)
C21A	0.059(3)	0.087(4)	0.096(4)	0.017(3)	0.000(3)	0.054(3)
C22A	0.049(2)	0.046(2)	0.031(2)	0.015(2)	0.008(2)	0.015(2)
C23A	0.052(3)	0.049(2)	0.048(2)	0.010(2)	0.002(2)	0.012(2)
C24A	0.056(3)	0.061(3)	0.064(3)	-0.002(2)	-0.004(2)	0.017(2)
C25A	0.091(4)	0.047(3)	0.059(3)	-0.003(3)	-0.006(3)	0.014(2)
	· · ·	(-)	(-)	. (-)	- (-)	(-)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26A	0.105(4)	0.046(3)	0.058(3)	0.025(3)	0.007(3)	0.016(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27A	0.067(3)	0.057(3)	0.047(2)	0.025(2)	0.009(2)	0.020(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28A	0.046(2)	0.051(2)	0.041(2)	0.020(2)	0.015(2)	0.021(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29A	0.048(3)	0.090(4)	0.046(2)	0.025(2)	0.011(2)	0.013(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30A	0.050(3)	0.107(4)	0.075(3)	0.032(3)	0.017(2)	0.021(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31A	0.064(3)	0.097(4)	0.082(4)	0.040(3)	0.041(3)	0.039(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32A	0.083(4)	0.123(5)	0.053(3)	0.054(3)	0.035(3)	0.036(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33A	0.065(3)	0.123(4)	0.043(2)	0.048(3)	0.020(2)	0.033(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34A	0.043(2)	0.048(2)	0.037(2)	0.015(2)	0.012(2)	0.015(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C35A	0.096(4)	0.056(3)	0.053(3)	0.027(3)	0.012(3)	0.012(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36A	0.156(6)	0.048(3)	0.083(4)	0.047(3)	0.025(4)	0.019(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C37A	0.116(5)	0.077(4)	0.095(4)	0.054(4)	0.035(4)	0.053(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C38A	0.080(3)	0.085(4)	0.074(3)	0.031(3)	0.003(3)	0.045(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C39A	0.064(3)	0.058(3)	0.050(3)	0.018(2)	-0.002(2)	0.022(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C40A	0.046(2)	0.056(2)	0.042(2)	0.019(2)	0.013(2)	0.018(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C41A	0.050(2)	0.059(3)	0.041(2)	0.017(2)	0.012(2)	0.021(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42A	0.072(3)	0.072(3)	0.050(3)	0.029(3)	0.017(2)	0.031(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C43A	0.097(4)	0.076(3)	0.063(3)	0.034(3)	0.024(3)	0.039(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C44A	0.081(4)	0.059(3)	0.079(4)	0.003(3)	0.007(3)	0.032(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C45A	0.054(3)	0.066(3)	0.059(3)	0.012(2)	0.005(2)	0.024(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C46A	0.039(2)	0.062(3)	0.041(2)	0.019(2)	0.005(2)	0.013(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C47A	0.061(3)	0.093(4)	0.052(3)	0.038(3)	0.021(2)	0.025(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C48A	0.076(4)	0.118(5)	0.063(3)	0.052(4)	0.026(3)	0.021(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C49A	0.082(4)	0.104(5)	0.074(4)	0.047(4)	0.014(3)	-0.005(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C50A	0.085(4)	0.068(3)	0.098(4)	0.025(3)	0.012(3)	0.003(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C51A	0.063(3)	0.062(3)	0.069(3)	0.017(2)	0.017(2)	0.013(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C52A	0.040(2)	0.056(3)	0.050(2)	0.013(2)	0.003(2)	0.022(2)
C54A 0.081(4) 0.158(6) 0.052(3) 0.035(4) -0.017(3) 0.009(4) C55A 0.074(4) 0.134(6) 0.085(4) 0.032(4) -0.029(3) 0.029(4) C56A 0.053(3) 0.118(5) 0.108(5) 0.037(3) -0.006(3) 0.031(4) C57A 0.048(3) 0.085(4) 0.072(3) 0.029(2) 0.001(2) 0.022(3)	C53A	0.063(3)	0.114(4)	0.049(3)	0.032(3)	-0.002(2)	0.014(3)
C55A 0.074(4) 0.134(6) 0.085(4) 0.032(4) -0.029(3) 0.029(4) C56A 0.053(3) 0.118(5) 0.108(5) 0.037(3) -0.006(3) 0.031(4) C57A 0.048(3) 0.085(4) 0.072(3) 0.029(2) 0.001(2) 0.022(3)	C54A	0.081(4)	0.158(6)	0.052(3)	0.035(4)	-0.017(3)	0.009(4)
C56A 0.053(3) 0.118(5) 0.108(5) 0.037(3) -0.006(3) 0.031(4) C57A 0.048(3) 0.085(4) 0.072(3) 0.029(2) 0.001(2) 0.022(3)	C55A	0.074(4)	0.134(6)	0.085(4)	0.032(4)	-0.029(3)	0.029(4)
C57A 0.048(3) 0.085(4) 0.072(3) 0.029(2) 0.001(2) 0.022(3)	C56A	0.053(3)	0.118(5)	0.108(5)	0.037(3)	-0.006(3)	0.031(4)
	C57A	0.048(3)	0.085(4)	0.072(3)	0.029(2)	0.001(2)	0.022(3)

H4 Einkristall–Röntgenstrukturanalyse von 2–Triphenylphosphanimino–4–azidotetrazolo[5,1-*a*]–[1,3,5]triazin (31)

	31
Formel	$C_{21}H_{15}N_{10}P_1 \cdot 0.5 C_2H_4Cl_2$
Molekulargewicht $[g \cdot mol^{-1}]$	487.87
Gitterkonstanten [Å]	a = 42.059(6), b = 13.916(4),
	$c = 15.995(4), \beta = 101.77(2)$
Zellvolumen [Å ³]	9165(4)
Zahl der Formeleinheiten pro Zelle	8
Dichte (ber.) $[g \cdot cm^{-3}]$	1.414
Kristallsystem, Raumgruppe	monoklin, Raumgruppe C2/c
Kristallgröße [mm]	$0.2 \times 0.47 \times 0.53$
Messgerät	(Nonius Mach3)
Strahlung	Mo-K _{α} $\lambda = 0.71073$
Messtemperatur	293(2) K
Messbereich	$\theta = 2.59 - 23.98$
Indexbereich h _{min/max}	-48/0
k _{min/max}	0/15
l _{min/max}	-17/18
Zahl der gemessenen Reflexe	7275
Zahl der unabhängigen Reflexe	7168 [R(int) = 0.0201]
Zahl der beobachteten Reflexe mit $I > 2$	σI 4342
F(000)	4016
Strukturaufklärung	Direkte Methoden
Verfeinerung	Vollmatrix gegen F^2
Anzahl der Parameter	505
Verwendete Rechenprogramme	SHELXL-93, SHELXS-86
Goodness-of-Fit on F^2	1.016
Gütefaktoren R (I > 2 σ I)	R1 = 0.0758; wR2 = 0.1632
Restelektronendichten $[e \cdot A^{-3}]$	$\Delta \rho_{\rm max} = 0.440; \ \Delta \rho_{\rm min} = -0.44$

H4.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

H4.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

Atom	Wyck.	Symm.	Х	у	Z	U
P1	8 <i>f</i>	1	0.33132(3)	0.12479(9)	0.98190(7)	
N1	8 <i>f</i>	1	0.36624(9)	0.1153(3)	0.9560(2)	
N2	8 <i>f</i>	1	0.34908(11)	0.1050(3)	0.8058(3)	
N3	8 <i>f</i>	1	0.3898(2)	0.0960(4)	0.7195(4)	
N4	8 <i>f</i>	1	0.4436(2)	0.0987(5)	0.8041(5)	
N5	8 <i>f</i>	1	0.45460(14)	0.1067(5)	0.8899(6)	
N6	8 <i>f</i>	1	0.43082(13)	0.1103(4)	0.9317(4)	
N7	8 <i>f</i>	1	0.40341(11)	0.1064(3)	0.8694(3)	
N8	8 <i>f</i>	1	0.3377(2)	0.0988(5)	0.6562(4)	
N9	8f	1	0.3094(2)	0.1049(5)	0.6634(4)	
N10	8 <i>f</i>	1	0.28298(3)	0.11034(10)	0.65836(8)	
C1	8f	1	0.30831(3)	0.2285(1)	0.93756(8)	
C2	8 <i>f</i>	1	0.28664(3)	0.22215(10)	0.85952(8)	
H2	8 <i>f</i>	1	0.28263(3)	0.16305(10)	0.83227(8)	0.0630
C3	8 <i>f</i>	1	0.27096(3)	0.30414(10)	0.82223(8)	
H3	8 <i>f</i>	1	0.25647(3)	0.2999(1)	0.77002(8)	0.0710
C4	8 <i>f</i>	1	0.27694(3)	0.39247(10)	0.86298(8)	
H4	8 <i>f</i>	1	0.26644(3)	0.44732(10)	0.83803(8)	0.0780
C5	$\check{8f}$	1	0.29860(3)	0.39882(10)	0.94101(8)	
Н5	8 <i>f</i>	1	0.30260(3)	0.45792(10)	0.96827(8)	0.0770
C6	$\check{8f}$	1	0.31428(3)	0.31683(10)	0.97831(8)	
H6	8 <i>f</i>	1	0.32876(3)	0.32107(10)	1.03054(8)	0.0600

C7	8 <i>f</i>	1 0.30717(3)	0.01687(10)	0.95817(8)	
C8	8 <i>f</i>	0.27354(3)	0.01829(10)	0.94758(8)	
H8	8 <i>f</i>	0.26274(3)	0.0763(1)	0.94959(8)	0.0620
C9	8 <i>f</i>	1 0.25605(3)	-0.0670(1)	0.93399(8)	0.0050
H9	8 <i>f</i>	$1 \qquad 0.23355(3) \\ 0.27219(2)$	-0.06605(10)	0.92690(8)	0.0850
U10	8 <i>J</i>	$\begin{array}{ccc} 1 & 0.2/218(3) \\ 1 & 0.26047(3) \end{array}$	-0.15371(10) 0.21078(10)	0.93100(8)	0.0850
C11	0j 8f	1 0.20047(3) 1 0.30581(3)	-0.21078(10) -0.15513(10)	0.92192(8) 0.94159(8)	0.0850
H11	8j	1 0.30381(3) 1 0.31660(3)	-0.13315(10) -0.21315(10)	0.94139(8) 0.93959(8)	0.0710
C12	8f	0.32331(3)	-0.06984(10)	0.95518(8)	0.0710
H12	8 <i>f</i>	0.34581(3)	-0.0708(1)	0.96227(8)	0.0580
C13	8f	0.34106(3)	0.13815(10)	1.09526(8)	
C14	8 <i>f</i>	0.37328(3)	0.14076(10)	1.13835(8)	
H14	8 <i>f</i>	0.38989(3)	0.13718(10)	1.10799(8)	0.0600
C15	8 <i>f</i>	1 0.38068(3)	0.14872(10)	1.22682(8)	
H15	8f	1 0.40224(3)	0.15046(10)	1.25565(8)	0.0710
	8 <i>J</i>	$\begin{array}{ccc} 1 & 0.35585(3) \\ 1 & 0.2(080(2)) \end{array}$	0.1540/(10)	1.2/221(8)	0.0720
H10 C17	8 <i>j</i> 8 <i>f</i>	$\begin{array}{ccc} 1 & 0.30080(3) \\ 1 & 0.32363(3) \end{array}$	0.15939(10) 0.15146(10)	1.33141(8) 1.22012(8)	0.0730
H17	8f	1 0.32303(3) 1 0.30702(3)	0.15140(10) 0.15504(10)	1.22912(0) 1.25949(8)	0 0740
C18	8f	0.31623(3)	0.1435(1)	1.14065(8)	0.0710
H18	8 <i>f</i>	0.29467(3)	0.14175(10)	1.11183(8)	0.0630
C19	8f	0.37121(12)	0.1091(3)	0.8780(3)	
C20	8 <i>f</i>	1 0.3601(2)	0.1006(4)	0.7319(4)	
C21	8 <i>f</i>	0.4119(2)	0.1001(4)	0.7921(5)	
PIA	8 <i>f</i>	0.10951(3)	0.12701(9)	0.48843(7)	
NIA	8 <i>J</i>	1 0.14236(9)	0.1252(3) 0.1101(2)	0.5623(2)	
N2A N3A	0j 8f	0.11466(10) 0.14611(12)	0.1101(3) 0.0991(3)	0.0772(2) 0.8210(3)	
N4A	8f	1 0.14011(12) 1 0.20336(13)	0.0991(3) 0.1023(4)	0.8210(3) 0.8250(3)	
N5A	8f	1 0.22020(12)	0.1116(4)	0.7611(3)	
N6A	8 <i>f</i>	0.20119(11)	0.1189(3)	0.6849(3)	
N7A	8f	0.17075(9)	0.1131(3)	0.7009(2)	
N8A	8 <i>f</i>	1 0.09130(13)	0.0999(4)	0.7983(3)	
N9A	8 <i>f</i>	0.06529(14)	0.1011(5)	0.7466(3)	
N10A	8 <i>f</i>	1 0.04016(3)	0.10198(10)	0.70998(8)	
CIA	8f	$\begin{array}{ccc} 1 & 0.12358(3) \\ 1 & 0.15657(2) \end{array}$	0.13/9/(10) 0.14221(10)	0.39048(8)	
H2A	6 <i>j</i> 8 <i>f</i>	0.13037(3) 0.17171(3)	0.14221(10) 0.1410(1)	0.39013(8) 0.44139(8)	0.0600
C3A	8f	0.17171(3) 0.16694(3)	0.1410(1) 0.14826(10)	0.44139(8) 0.31316(8)	0.0000
H3A	8 <i>f</i>	0.18901(3)	0.1511(1)	0.31292(8)	0.0730
C4A	8 <i>f</i>	0.14432(3)	0.15007(10)	0.23654(8)	
H4A	8 <i>f</i>	0.15126(3)	0.15412(10)	0.18504(8)	0.0730
C5A	8f	0.11133(3)	0.14583(10)	0.23689(8)	0.0700
HSA	8 <i>J</i>	$\begin{array}{ccc} 1 & 0.09620(3) \\ 1 & 0.10006(2) \end{array}$	0.14/04(10) 0.12078(10)	0.18562(8) 0.21285(8)	0.0700
Нба	0j 8f	1 0.10090(3) 1 0.07889(3)	0.13978(10) 0.13694(10)	0.31383(8) 0.31408(8)	0.0610
C7A	8f	1 0.07609(3) 1 0.08693(3)	0.01751(10)	0.48312(8)	0.0010
C8A	8f	1 0.05379(3)	0.01189(10)	0.44943(8)	
H8A	8 <i>f</i>	0.04209(3)	0.06734(10)	0.43108(8)	0.0710
C9A	8 <i>f</i>	0.03815(3)	-0.07659(10)	0.44317(8)	
H9A	8 <i>f</i>	0.01598(3)	-0.08035(10)	0.42062(8)	0.0910
C10A	8 <i>f</i>	0.05564(3)	-0.15946(10)	0.47061(8)	
HIOA	8f	1 0.04518(3)	-0.21866(10)	0.46643(8)	0.0860
	8 <i>J</i>	$\begin{array}{ccc} 1 & 0.088/8(3) \\ 1 & 0.10048(2) \end{array}$	-0.15385(10)	0.50430(8)	0.0700
C12A	6 <i>j</i> 8 <i>f</i>	0.10048(3) 0.10442(3)	-0.2093(1) -0.06537(10)	0.32204(8) 0.51056(8)	0.0700
H12A	8f	0.10442(3) 0.12659(3)	-0.06162(10)	0.53310(8)	0.0580
C13A	8f	1 0.08371(3)	0.22752(10)	0.49571(8)	0.0000
C14A	8 <i>f</i>	0.08969(3)	0.31346(10)	0.45738(8)	
H14A	8 <i>f</i>	0.10674(3)	0.31767(10)	0.42854(8)	0.0640
C15A	8 <i>f</i>	0.07019(3)	0.3931(1)	0.46215(8)	
H15A	8 <i>f</i>	1 0.07419(3)	0.4506(1)	0.43650(8)	0.0920
CI6A	8f	1 0.04472(3)	0.3868(1)	0.50524(8)	0 1000
C17A	8 <i>J</i>	$\begin{array}{ccc} 1 & 0.03108(3) \\ 1 & 0.02874(2) \end{array}$	0.44009(10) 0.20087(10)	0.50843(8) 0.54357(8)	0.1000
H17A	0j 8f	1 0.03874(3) 1 0.02170(3)	0.30087(10)	0.54337(8) 0.57239(8)	0.0920
C18A	8f	1 0.05824(3)	0.22123(10)	0.53881(8)	5.0720
H18A	8 <i>f</i>	1 0.05424(3)	0.16374(10)	0.56446(8)	0.0690
C19A	8 <i>f</i>	1 0.14100(12)	0.1163(3)	0.6430(3)	
C20A	8 <i>f</i>	0.11914(14)	0.1027(4)	0.7633(3)	
C21A	8 <i>f</i>	0.17254(14)	0.1038(4)	0.7871(3)	
CII	8 <i>f</i>	0.46541(7)	0.1434(3)	1.1790(2)	
U22 H22A	ðJ 8f	1 0.4911(2) 1 0.4786(2)	0.0492(6)	1.20/4(5) 1.1080(5)	0 1220
H22B	8f	0.5064(2)	0.0480(6)	1.1696(5)	0.1320
	-0	5.500.(2)			

Cl1A	8 <i>f</i>	1	0.01690(6)	0.1493(2)	0.1636(2)	
C22A	8 <i>f</i>	1	-0.0031(2)	0.2440(6)	0.2031(5)	
H22C	8 <i>f</i>	1	0.0042(2)	0.3045(6)	0.1834(5)	0.1270
H22D	81	1	-0.0263(2)	0.2386(6)	0.1809(5)	0.1270
Atom	<i>U</i> ₁₁	U22	U33	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
P1	0.0385(7)	0.0424(8)	0.0315(6)	0.0000(6)	0.0088(5)	-0.0030(6)
NI N2	0.043(2) 0.070(2)	0.053(3) 0.045(3)	0.041(2) 0.038(2)	0.001(2) 0.002(2)	0.012(2) 0.023(2)	0.000(2)
INZ N3	0.070(3) 0.122(5)	0.045(3) 0.057(4)	0.038(2) 0.081(4)	0.002(2) 0.007(3)	0.023(2) 0.068(4)	-0.002(2)
N4	0.122(3) 0.097(5)	0.037(4) 0.080(5)	0.081(4) 0.146(7)	-0.007(3) -0.007(4)	0.008(4) 0.080(5)	-0.008(3) -0.011(5)
N5	0.061(4)	0.079(4)	0.171(7)	0.000(3)	0.058(4)	0.001(5)
N6	0.055(3)	0.066(4)	0.121(5)	-0.001(3)	0.035(3)	0.005(3)
N7	0.059(3)	0.037(3)	0.075(3)	0.000(2)	0.039(3)	-0.001(2)
N8	0.141(6)	0.090(5)	0.042(3)	0.000(5)	0.027(4)	-0.008(3)
N9	0.146(7)	0.090(5)	0.043(3)	0.006(5)	-0.002(4)	-0.016(3)
NI0 C1	0.146(7) 0.027(2)	0.185(9) 0.043(3)	0.060(4) 0.036(3)	-0.001(7)	-0.005(5)	-0.018(5)
C^2	0.037(3) 0.052(3)	0.043(3) 0.060(4)	0.030(3) 0.046(3)	-0.004(2) -0.002(3)	0.013(2) 0.009(3)	-0.001(2) -0.003(3)
C3	0.052(3) 0.053(3)	0.063(4)	0.040(3) 0.060(4)	-0.002(3) 0.005(3)	0.009(3)	-0.003(3) 0.012(3)
C4	0.061(4)	0.053(4)	0.084(4)	0.013(3)	0.022(3)	0.022(3)
C5	0.079(4)	0.036(3)	0.080(4)	0.008(3)	0.024(4)	-0.002(3)
C6	0.057(3)	0.051(3)	0.043(3)	-0.002(3)	0.013(3)	-0.008(3)
C7	0.051(3)	0.037(3)	0.029(2)	-0.001(2)	0.005(2)	-0.003(2)
C8	0.049(3)	0.045(3)	0.057(3)	-0.006(3)	0.001(3)	-0.003(3)
C10	0.066(4) 0.100(5)	0.073(5) 0.055(4)	0.069(4) 0.051(4)	-0.022(4)	0.004(3) 0.003(3)	0.000(3) 0.002(3)
C10	0.100(3) 0.092(5)	0.039(3)	0.031(4) 0.047(3)	-0.020(4)	0.003(3)	-0.002(3) -0.002(3)
C12	0.058(3)	0.051(3)	0.038(3)	0.007(3)	0.013(2)	0.000(2)
C13	0.047(3)	0.037(3)	0.040(3)	0.000(2)	0.008(2)	0.004(2)
C14	0.051(3)	0.051(3)	0.046(3)	-0.004(3)	0.005(2)	-0.003(3)
C15	0.065(4)	0.058(4)	0.047(3)	-0.003(3)	-0.006(3)	0.001(3)
C16	0.098(5)	0.050(4)	0.034(3)	-0.001(3)	0.012(3)	0.002(3)
C17	0.0/5(4) 0.055(3)	0.075(4)	0.039(3)	0.003(3) 0.003(3)	0.021(3) 0.011(3)	-0.005(3)
C18	0.055(3) 0.054(3)	0.000(4) 0.028(3)	0.044(3) 0.055(3)	-0.003(3)	0.011(3) 0.022(3)	-0.003(3) 0.003(2)
C20	0.034(3) 0.110(5)	0.036(3)	0.055(3) 0.052(4)	-0.003(3)	0.022(3) 0.037(4)	-0.005(2)
C21	0.089(5)	0.038(4)	0.108(6)	-0.008(3)	0.069(5)	-0.006(4)
P1A	0.0393(7)	0.0397(7)	0.0295(6)	0.0001(6)	0.0050(5)	0.0018(6)
N1A	0.044(2)	0.048(3)	0.033(2)	-0.001(2)	0.003(2)	0.002(2)
N2A	0.051(2)	0.047(3)	0.031(2)	-0.010(2)	0.003(2)	0.000(2)
N3A N4A	0.07/(3)	0.058(3)	0.036(2)	-0.001(3)	0.001(2)	-0.003(2)
N4A N5A	0.072(3) 0.057(3)	0.070(4) 0.073(4)	0.030(3) 0.072(4)	0.009(3) 0.005(3)	-0.012(3) -0.019(3)	-0.008(3) -0.016(3)
N6A	0.057(3)	0.059(3)	0.058(3)	-0.005(2)	-0.001(2)	-0.009(2)
N7A	0.043(2)	0.040(2)	0.041(2)	0.001(2)	-0.004(2)	-0.003(2)
N8A	0.074(3)	0.091(4)	0.043(3)	-0.006(3)	0.016(3)	0.001(3)
N9A	0.075(4)	0.119(5)	0.050(3)	-0.022(4)	0.021(3)	0.007(3)
N10A	0.080(5)	0.231(10)	0.080(5)	-0.031(6)	0.016(4)	0.022(5)
CIA	0.049(3)	0.035(3) 0.053(3)	0.034(3) 0.047(3)	0.003(2)	0.009(2) 0.008(2)	0.001(2) 0.000(3)
C2A C3A	0.049(3) 0.062(4)	0.033(3) 0.063(4)	0.047(3) 0.065(4)	0.000(3) 0.002(3)	0.008(2) 0.031(3)	0.000(3) 0.003(3)
C4A	0.086(4)	0.055(4)	0.048(3)	0.001(3)	0.029(3)	0.003(3)
C5A	0.078(4)	0.063(4)	0.033(3)	0.003(3)	0.011(3)	0.000(3)
C6A	0.056(3)	0.057(4)	0.039(3)	0.003(3)	0.007(2)	-0.001(3)
C7A	0.039(3)	0.044(3)	0.030(2)	-0.002(2)	0.006(2)	0.002(2)
C8A	0.048(3)	0.053(4)	0.072(4)	-0.003(3)	0.000(3)	0.002(3)
C9A C10A	0.056(4) 0.099(5)	0.074(5) 0.056(4)	0.091(5) 0.058(4)	-0.019(3)	-0.001(3) 0.013(4)	-0.003(4) 0.004(3)
CILA	0.099(3) 0.086(4)	0.030(4) 0.043(3)	0.038(4) 0.046(3)	-0.028(4) 0.002(3)	0.013(4) 0.011(3)	-0.004(3) 0.003(3)
C12A	0.058(3)	0.047(3)	0.039(3)	-0.001(3)	0.004(2)	0.003(3) 0.002(2)
C13A	0.049(3)	0.038(3)	0.036(3)	0.001(2)	0.010(2)	0.003(2)
C14A	0.060(3)	0.052(4)	0.051(3)	0.001(3)	0.015(3)	0.001(3)
C15A	0.093(5)	0.051(4)	0.090(5)	0.010(4)	0.026(4)	0.009(3)
C16A	0.085(5)	0.065(5)	0.100(5)	0.019(4)	0.021(4)	-0.019(4)
CI%A	0.070(4)	0.072(5)	0.099(5)	0.013(4)	0.041(4) 0.025(3)	-0.007(4)
C10A C10A	0.038(4)	0.034(4)	0.004(4) 0.042(3)	-0.000(3)	0.023(3) 0.001(2)	-0.005(3)
C20A	0.047(3) 0.069(4)	0.028(3) 0.043(3)	0.037(3)	-0.003(3)	0.007(3)	-0.003(2)
C21A	0.066(4)	0.040(3)	0.038(3)	0.003(3)	-0.016(3)	-0.006(2)
Cl1	0.106(2)	0.205(3)	0.227(4)	0.028(2)	-0.002(2)	0.097(3)
C22	0.106(7)	0.105(7)	0.118(7)	-0.009(5)	0.020(5)	-0.001(5)
CllA	0.098(2)	0.201(3)	0.148(2)	-0.012(2)	0.008(2)	-0.085(2)
C22A	0.062(4)	0.109(6)	0.147(8)	-0.009(5)	0.023(6)	0.032(5)

H5 Einkristall–Röntgenstrukturanalyse von 2,4–Bis(triphenyl phosphanimino)tetrazolo[5,1-*a*]–[1,3,5]triazin (32)

H5.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

	32
Formel	$C_{39}H_{30}N_8P_2 \cdot 2 \text{ CHCl}_3$
Molekulargewicht $[g \cdot mol^{-1}]$	911.39
Gitterkonstanten [Å]	a = 11.013(2), b = 23.182(5),
	$c = 17.195(3) \beta = 101.580(9)$
Zellvolumen [Å ³]	4300(2)
Zahl der Formeleinheiten pro Zelle	4
Dichte (ber.) $[g \cdot cm^{-3}]$	1.408
Kristallsystem, Raumgruppe	monoklin, $P2_1/n$
Kristallgröße [mm]	$0.35 \times 0.3 \times 0.25$
Messgerät	Siemens SMART Area detector
Strahlung	Mo-K _{α} $\lambda = 0.71073$
Messtemperatur	173(2) K
Messbereich	$\theta = 2.98 - 58.54$
Indexbereich h _{min/max}	-14/14
k _{min/max}	-28/28
l _{min/max}	-18/23
Zahl der gemessenen Reflexe	24656
Zahl der unabhängigen Reflexe	7509 [R(int) = 0.0292]
Zahl der beobachteten Reflexe mit I > 2σ I	6006
F(000)	1864
Strukturaufklärung	Direkte Methoden
Verfeinerung	Vollmatrix gegen F^2
Anzahl der Parameter	514
Verwendete Rechenprogramme	SHELXL-97, SHELXS-97
Goodness-of-Fit on F^2	1.109
Gütefaktoren R (I > 2 σ I)	R1 = 0.0481; wR2 = 0.0976
Restelektronendichten $[e \cdot A^{-3}]$	$\Delta \rho_{\rm max} = 0.404; \ \Delta \rho_{\rm min} = -0.425$

H5.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

Atom	Wyck.	Symm.	X	у	Z	U
P1	4 <i>e</i>	1	0.56645	0.09445	0.61359	
P2	4e	1	0.18206	0.05329	0.86396	
CL1	4e	1	0.48498	0.21627	1.01473	
CL2	4e	1	0.32741	0.17104	1.11493	
CL3	4e	1	0.48075	0.26961	1.16564	
CL4	4e	1	0.89075	0.25049	0.30574	
CL5	4e	1	0.96826	0.13745	0.26445	
CL6	4e	1	0.81713	0.20844	0.14563	
N1	4e	1	0.55354	0.02956	0.64494	
N2	4 <i>e</i>	1	0.27540	0.07373	0.80843	
N3	4 <i>e</i>	1	0.41619	0.05389	0.72999	
N4	4e	1	0.46657	-0.04122	0.71060	
N5	4 <i>e</i>	1	0.52178	-0.08811	0.68369	
N6	4e	1	0.47131	-0.13230	0.71033	
N7	4e	1	0.38492	-0.11721	0.75344	
N8	4e	1	0.31237	-0.02347	0.78564	
C1	4e	1	0.47940	0.01727	0.69438	
C2	4 <i>e</i>	1	0.33552	0.03301	0.77470	
C3	4e	1	0.38188	-0.05956	0.75270	
C100	4e	1	0.46855	0.20448	1.11324	
H10A	4e	1	0.53550	0.17891	1.13903	-1.2000
C101	4e	1	0.85050	0.18949	0.24650	
H10B	4e	1	0.77566	0.17267	0.25987	-1.2000
C111	4e	1	0.42246	0.12452	0.55990	

C112	4 <i>e</i>	1	0.39917	0.12490	0.47762	
H11A	4e	1	0.46015	0.11268	0.45096	-1.2000
C113	4e	1	0.28544	0.14341	0.43481	
H11B	4e	1	0.27052	0.14391	0.37962	-1.2000
C114	4 <i>e</i>	1	0.19469	0.16104	0.47416	
H11C	4e	1	0.11798	0.17292	0.44555	-1.2000
C115	4e	1	0.21748	0.16107	0.55594	
H11D	4e	1	0.15591	0.17323	0.58213	-1.2000
C116	4e	1	0.33053	0.14327	0.59953	
H11E	4 <i>e</i>	1	0.34537	0.14376	0.65471	-1.2000
C121	4e	1	0.66820	0.08656	0.54417	
C122	4e	1	0.73325	0.13373	0.52327	
H12A	4e	1	0.72593	0.16965	0.54597	-1.2000
C123	4e	1	0.80853	0.12693	0.46879	
H12B	4 <i>e</i>	1	0.85155	0.15846	0.45457	-1.2000
C124	4 <i>e</i>	1	0.82050	0.07370	0.43519	
H12C	4 <i>e</i>	1	0.87157	0.06949	0.39856	-1.2000
C125	4 <i>e</i>	1	0.75702	0.02679	0.45578	1 2000
H12D	4 <i>e</i>	1	0.76544	-0.00910	0.43331	-1.2000
C126	4 <i>e</i>	1	0.68065	0.03324	0.51004	1 2000
HI2E	4 <i>e</i>	I	0.63/38	0.00161	0.52370	-1.2000
C131	4e	1	0.63809	0.14419	0.68880	
C132	4 <i>e</i>	1	0.6155/	0.20315	0.68313	1 2000
HI3A	4e	1	0.55/90	0.21/91	0.64079	-1.2000
U133	4e	1	0.67923	0.23994	0.74073	1 2000
C124	4e	1	0.00434	0.27944	0.73704	-1.2000
U134	40	1	0.70441	0.21800	0.80333	1 2000
C135	40	1	0.80000	0.24280	0.84202	-1.2000
H13D	40	1	0.78700	0.13580	0.80915	1 2000
C136	40	1	0.72517	0.14344	0.75261	-1.2000
H13F	40	1	0.74089	0.08325	0.75686	_1 2000
C211	40	1	0.24901	0.00325	0.94697	-1.2000
C212	40	1	0 22953	-0.05124	0.94873	
H21A	4e	1	0 17414	-0.06898	0 90777	-1.2000
C213	4e	1	0.29263	-0.08372	1.01142	1.2000
H21B	4e	1	0.27845	-0.12322	1.01278	-1.2000
C214	4 <i>e</i>	1	0.37617	-0.05818	1.07177	
H21C	4e	1	0.41828	-0.08026	1.11380	-1.2000
C215	4e	1	0.39705	0.00031	1.06956	
H21D	4e	1	0.45439	0.01756	1.10996	-1.2000
C216	4e	1	0.33382	0.03359	1.00807	
H21E	4e	1	0.34799	0.07312	1.00752	-1.2000
C221	4e	1	0.04293	0.01938	0.80981	
C222	4e	1	0.02138	0.02043	0.72717	
H22A	4e	1	0.07881	0.03725	0.70120	-1.2000
C223	4e	1	-0.08661	-0.00386	0.68386	
H22B	4e	1	-0.10126	-0.00312	0.62869	-1.2000
C224	4 <i>e</i>	1	-0.17193	-0.02893	0.72152	
H22C	4 <i>e</i>	1	-0.24311	-0.04569	0.69186	-1.2000
C225	4e	1	-0.15231	-0.02928	0.80270	
H22D	4e	1	-0.21076	-0.04581	0.82810	-1.2000
C226	4e	1	-0.04503	-0.00494	0.84731	
H22E	4 <i>e</i>	1	-0.03233	-0.00499	0.90244	-1.2000
C231	4 <i>e</i>	1	0.13175	0.11848	0.90529	
C232	4 <i>e</i>	1	0.14191	0.17123	0.86911	
H23A	4 <i>e</i>	1	0.17929	0.17335	0.82526	-1.2000
C233	4 <i>e</i>	1	0.09645	0.22086	0.89817	1 0000
H23B	4 <i>e</i>	1	0.10353	0.25616	0.87377	-1.2000
C234	4 <i>e</i>	1	0.04096	0.21806	0.96293	1 2000
H23C	4e	1	0.01054	0.25145	0.98215	-1.2000
0235	4 <i>e</i>	1	0.03028	0.16580	0.99948	1 2000
H23D	40	1	-0.00/33	0.10405	1.04325	-1.2000
U230	40	1	0.0/000	0.11391	0.9/103	1 2000
п23E	40	1	0.00840	0.080/5	0.993/9	-1.2000

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.00022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00163
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.04605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01995
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03328
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00827
N2 0.03089 0.02978 0.02595 -0.00009 0.01052 N3 0.02761 0.02850 0.02018 -0.00208 0.00677 N4 0.02560 0.02854 0.02040 -0.00153 0.00765 N5 0.04126 0.02980 0.03471 0.00227 0.01749 N6 0.04929 0.02992 0.04364 0.00001 0.02299 N7 0.03907 0.02944 0.03633 -0.00214 0.01632 N8 0.02500 0.03046 0.02325 -0.00256 0.00738 C1 0.02351 0.02679 0.01858 -0.00377 0.00318 C2 0.02433 0.03165 0.01989 -0.00241 0.00440 C3 0.02489 0.03083 0.01692 -0.00247 0.01705 C100 0.04190 0.04559 0.04715 -0.00227 -0.00100 C111 0.02852 0.02304 0.02362 -0.00149 -0.00247 C112 0.04077 0.03114 0.02601 0.00341 0.00509 C113 0.05104 0.04896 0.01255 -0.00991 -0.00741 C114 0.03721 0.04899 0.04886 0.01255 -0.00991 C115 0.03316 0.05435 0.04704 0.01375 0.00592 C122 0.04670 0.03174 0.04587 -0.00843 0.02294 C123 0.05617 0.02956 0.02231 -0.00043 0.002240 C126 0	0.00244
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00086
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00078
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00076
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00196
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00203
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00031
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00305
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00767
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00316
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00298
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00587
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 00479
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00030
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00201
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 00274
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00213
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00168
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00792
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00061
C132 0.03283 0.03374 0.03741 0.00461 0.00403 - C133 0.03888 0.03299 0.06549 0.00240 0.00666 - C134 0.03759 0.05272 0.05280 -0.00168 0.00265 - C124 0.03759 0.05272 0.05280 -0.00168 0.00265 -	0.00370
C133 0.03888 0.03299 0.06549 0.00240 0.00666 - C134 0.03759 0.05272 0.05280 -0.00168 0.00265 -	0.00361
C134 0.03759 0.05272 0.05280 -0.00168 0.00265 -	0.01853
	0.02727
- CT35 0.04424 0.05577 0.03273 0.00291 $-$ 0.0809 $-$	0.00861
C136 0.04076 0.03246 0.03213 -0.00057 0.00074 -	0.00302
C211 0.02498 0.03609 0.01903 0.00261 0.00616 -	0.00163
C212 0.04117 0.03968 0.02790 -0.00283 0.00010	0.00246
C213 0.05718 0.04097 0.04050 0.00118 0.00484	0.01172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01111
$C_{215} = 0.04510 = 0.06144 = 0.03086 = 0.00462 = -0.00618 = -0.00618$	0.00692
$C_{216} = 0.03743 = 0.04082 = 0.02965 = 0.00439 = -0.00068 = -0.00068$	0.00385
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 00467
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00478
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01855
C224 0.02761 0.04455 0.07414 0.00647 -0.00917 $-$	0.02576
C225 0.03072 0.03798 0.08019 -0.00325 0.01140 $-$	0.00644
C226 0.03349 0.03786 0.04557 -0.00571 0.01068 $-$	0.00330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00453
$C_{232} = 0.03943 = 0.03203 = 0.04158 = 0.00349 = 0.01193 = 0.003041 = 0.00$	0.00208
$C_{232} = 0.00575 = 0.00150 = 0.00045 = 0.00175 = 0.00$	0.00267
$C_{234} = 0.04040 = 0.04131 = 0.05177 = 0.00045 = 0.000453 = -0.$	0.00207
C_{235} 0.03848 0.05414 0.03585 0.00059 0.00025 -	0 02197
$C_{236} = 0.03355 = 0.03685 = 0.0303 = 0.00057 = 0.01052 = 0.010$	0.02197 0.01478

H6 Einkristall–Röntgenstrukturanalyse von

2,4-Dichloro-6-isocyanato-1,3,5-triazin (35)

H6.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Siehe Tabelle D11.

H6.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

Atom	Wyck.	Symm.	Х	У	Z
Cl1	8 <i>c</i>	1	0.17573(9)	0.21304(6)	0.02693(3)
Cl2	8 <i>c</i>	1	-0.41626(8)	-0.00717(8)	0.11040(4)
O9	8 <i>c</i>	1	0.0833(4)	-0.3308(3)	0.26730(13)
N3	8 <i>c</i>	1	0.1678(3)	0.0177(2)	0.11551(10)
N4	8c	1	-0.1041(3)	-0.0903(2)	0.15049(9)
N5	8 <i>c</i>	1	-0.1114(3)	0.0928(2)	0.07140(9)
N7	8c	1	0.1753(3)	-0.1586(3)	0.19190(12)
C6	8 <i>c</i>	1	0.0736(3)	-0.0742(2)	0.15089(11)
C8	8c	1	-0.1866(3)	-0.0014(2)	0.11091(11)
C10	8 <i>c</i>	1	0.0652(3)	0.0953(2)	0.07652(11)
C11	8 <i>c</i>	1	0.1183(4)	-0.2454(3)	0.2297(2)

Atom	<i>U</i> ₁₁	U22	U33	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Cl1	0.0559(4)	0.0472(4)	0.0535(4)	-0.0080(3)	0.0098(3)	0.0097(3)
Cl2	0.0318(4)	0.0763(5)	0.0882(6)	-0.0063(3)	-0.0026(3)	0.0046(4)
O9	0.126(2)	0.094(2)	0.098(2)	-0.007(2)	-0.004(2)	0.057(2)
N3	0.0353(10)	0.0460(11)	0.0503(12)	0.0010(9)	0.0032(9)	0.0071(9)
N4	0.0387(11)	0.0418(11)	0.0432(11)	-0.0048(9)	0.0040(9)	0.0002(9)
N5	0.0383(11)	0.0445(11)	0.0462(11)	-0.0008(9)	-0.0043(9)	0.0032(9)
N7	0.0495(13)	0.0674(15)	0.0700(14)	0.0045(12)	-0.0017(12)	0.0294(13)
C6	0.0420(14)	0.0405(13)	0.0423(13)	0.0045(11)	0.0029(10)	0.0030(11)
C8	0.0355(12)	0.0439(13)	0.0428(13)	-0.0028(11)	-0.0001(10)	-0.0054(11)
C10	0.0396(13)	0.0354(12)	0.0378(11)	-0.0007(10)	0.004(1)	-0.0011(10)
C11	0.064(2)	0.068(2)	0.069(2)	0.010(2)	-0.009(2)	0.020(2)

H7 Einkristall–Röntgenstrukturanalyse von

2-Chloro-4,6-diisocyanato-1,3,5-triazin (36)

H7.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Siehe Tabelle D11.

H7.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

Atom	Wyck.	Symm.	X	у	Z
Cl1	4 <i>e</i>	1	1.4849(2)	-0.0263(2)	0.18225(15)
O1	4e	1	0.8124(6)	0.3058(5)	-0.0304(4)
O2	4e	1	1.3122(6)	-0.2695(5)	0.6046(4)
N1	4e	1	1.1486(5)	0.0630(4)	0.1561(3)
N2	4e	1	0.9711(4)	0.0030(4)	0.2942(3)
N3	4e	1	1.2769(5)	-0.0905(4)	0.3221(3)
N4	4e	1	0.8483(5)	0.1524(5)	0.1335(4)
N5	4e	1	1.0942(5)	-0.1471(5)	0.4525(3)
C1	4e	1	1.2805(6)	-0.0177(5)	0.2242(4)
C2	4e	1	0.9965(6)	0.0689(5)	0.1979(4)
C3	4e	1	1.1156(6)	-0.0755(5)	0.3510(4)
C4	4e	1	0.8406(7)	0.2286(7)	0.0514(5)
C5	4e	1	1.2127(8)	-0.2073(6)	0.5259(5)

Atom	<i>U</i> ₁₁	U22	U33	U12	<i>U</i> ₁₃	U23
Cl1	0.0609(8)	0.1017(12)	0.1206(13)	0.0145(8)	0.0516(8)	0.0287(10)
O1	0.081(3)	0.130(4)	0.114(4)	0.024(3)	0.016(3)	0.067(3)
O2	0.107(3)	0.120(4)	0.079(3)	0.038(3)	0.026(2)	0.042(3)
N1	0.046(2)	0.052(2)	0.055(2)	0.000(2)	0.015(2)	0.008(2)
N2	0.045(2)	0.053(2)	0.048(2)	-0.001(2)	0.012(2)	0.002(2)
N3	0.050(2)	0.050(2)	0.054(2)	0.002(2)	0.015(2)	0.000(2)
N4	0.047(2)	0.069(3)	0.065(3)	0.007(2)	0.009(2)	0.013(2)
N5	0.062(2)	0.070(3)	0.048(2)	0.008(2)	0.020(2)	0.009(2)
C1	0.048(2)	0.042(3)	0.063(3)	0.000(2)	0.019(2)	0.000(2)
C2	0.042(2)	0.043(2)	0.051(3)	-0.004(2)	0.006(2)	-0.005(2)
C3	0.054(3)	0.043(2)	0.042(2)	-0.003(2)	0.012(2)	-0.003(2)
C4	0.045(3)	0.080(4)	0.085(4)	0.015(3)	0.012(3)	0.024(4)
C5	0.078(4)	0.071(4)	0.063(4)	0.004(3)	0.037(3)	0.005(3)

H8 Einkristall-Röntgenstrukturanalyse von [K([18]krone–6)(N₃)(OPPh₃)]

H8.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Siehe Tabelle E7.

H8.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

KI 3a 3m 2/3 1/3 0.01685(5) P2 3a 3m 2/3 1/3 0.01641(5) O1 9b .m 0.89143(14) 0.44572(7) 0.256254(13) 0.31073(14) O2 9b .m 0.89143(14) 0.44572(7) 0.28419(12) O3 3a 3m 2/3 1/3 0.1230(2) C1 18c 1 0.9431(2) 0.5549(2) 0.3153(2) H1B 18c 1 0.9399(2) 0.5577(2) 0.3846(2) 0.0790 C2 18c 1 0.9276(2) 0.6687(2) 0.228(2) 0.0750 H2B 18c 1 0.9296(10) 0.1961(2) -0.0294(2) 0.0750 C3 9b .m 0.55806(10) 0.1687(2) -0.1264(2) 0.0750 C4 9b .m 0.5304(2) 0.0609(3) -0.1536(2) 0.4532(3) -0.1264(2) 0.4539(3) 0.0353(3) 0.0383(3) 0.0385(3) 0.0385(3)	Atom	Wyck.	Symn	n. Oc	c.	X	У	Z	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K1	3 <i>a</i>	3m			2/3	1	0.31685(5))
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P2	3 <i>a</i>	3m			2/3	1	0.01641(5))
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	9 <i>b</i>	.m		0.7	8127(7)	0.56254(1	(3) 0.31073(14)	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	9 <i>b</i>	.m		0.89	143(14)	0.44572	(7) 0.28419(12)	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O3	3 <i>a</i>	3m			2/3	1	0.1230(2))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C1	18 <i>c</i>	1		0.	9431(2)	0.5549	(2) 0.3153(2))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H1A	18 <i>c</i>	1		1.	0189(2)	0.5922	(2) 0.2961(2)	0.0790
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H1B	18c	1		0.	9399(2)	0.5577	(2) 0.3846(2)	0.0790
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2	18c	1		0.	8872(2)	0.6084	(2) 0.2718(2)	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H2A	18c	1		0.	9276(2)	0.6857	(2) 0.2849(2)	0.0750
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2B	18c	1		0.	8830(2)	0.5982	(2) 0.2028(2)	0.0750
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	9b	.m		0.59	806(10)	0.1961	(2) -0.0294(2)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	9 <i>b</i>	.m		0.58	436(12)	0.1687	(2) -0.1264(2))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H4	9b	.m		0.61	153(12)	0.2231	(2) -0.1728(2)	0.0770
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	9 <i>b</i>	.m		0.	5304(2)	0.0609	(3) -0.1536(2))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5	9 <i>b</i>	.m		0.	5216(2)	0.0432	(3) -0.2184(2)	0.0980
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	9 <i>b</i>	.m		0.49	010(14)	-0.0198	(3) -0.0871(3))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H6	9 <i>b</i>	.m		0.45	395(14)	-0.0921	(3) -0.1064(3)	0.0960
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C7	9 <i>b</i>	.m		0.50	276(13)	0.0055	(3) 0.0084(3))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H7	9 <i>b</i>	.m		0.47	518(13)	-0.0496	(3) 0.0539(3)	0.0830
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C8	9 <i>b</i>	.m		0.55	638(11)	0.1128	(2) 0.0373(2)	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H8	9 <i>b</i>	.m		0.56	462(11)	0.1292	(2) 0.1023(2)	0.0610
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1	9b	.m	0.1	33 0.6	401(12)	0.3201	(6) 0.5144(5))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N2	3 <i>a</i>	3m			2/3	1	0.5916(5))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N3	9 <i>b</i>	.m	0	33 0.7	121(11)	0.3560	(5) 0.6692(6))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Atom	<i>U</i> ₁₁		U22	U33		U ₁₂	U ₁₃	U23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K1	0.03	85(3)	0.0385(3)	0.0361	(4) 0	01924(14)	0.00000	0.00000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P2	0.04	19(4)	0.0419(4)	0.0258	(5)	0.0209(2)	0.00000	0.00000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.04	86(7)	0.0396(10)	0.0515(1	0)	0.0198(5)	-0.0017(5)	-0.0034(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02	0.03	88(9)	0.0478(7)	0.0545(1	0)	0.0194(4)	-0.0069(7)	-0.0035(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03	0.062	3(12)	0.0623(12)	0.0274(1	2)	0.0312(6)	0.00000	0.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.040	8(10)	0.0504(11)	0.094	(2)	0.0138(9)	-0.0098(10)	-0.0146(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.051	8(11)	0.0392(10)	0.0836(1	4)	0.0134(8)	0.0097(10)	0.0038(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.03	97(8)	0.0443(13)	0.0434	1)	0.0222(6)	-0.0020(5)	-0.0041(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.076	7(14)	0.062(2)	0.0498(1	4)	0.0309(9)	-0.0072(6)	-0.0144(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.0	86(2)	0.073(2)	0.081	(2)	0.0365(11)	-0.0193(10)	-0.039(2)
C70.0414(10)0.047(2)0.122(3)0.0235(8)0.0081(9)0.016(2)C80.0416(10)0.051(2)0.063(2)0.0255(8)0.0042(7)0.0085(14)	C6	0.050	3(12)	0.061(2)	0.133	(3)	0.0306(10)	-0.0195(11)	-0.039(2)
C8 0.0416(10) 0.051(2) 0.063(2) 0.0255(8) 0.0042(7) 0.0085(14)	C7	0.041	4(10)	0.047(2)	0.122	(3)	0.0235(8)	0.0081(9)	0.016(2)
	C8	0.041	6(10)	0.051(2)	0.063	(2)	0.0255(8)	0.0042(7)	0.0085(14)

N1	0.059(6)	0.249(16)	0.041(4)	0.029(3)	0.000(4)	0.000(2)
N2	0.130(3)	0.130(3)	0.046(3)	0.065(2)	0.00000	0.00000
N3	0.207(20)	0.151(10)	0.043(4)	0.103(10)	-0.037(7)	-0.019(3)

H9 Einkristall-Röntgenstrukturanalyse von [K([18]krone–6)(OCN)(OPPh₃)]

H9.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Siehe Tabelle E7.

H9.2 Atomkoordinaten und Auslenkungsparameter [in Å²] von

Atom	Wyck.	Symm.	Occ.	X	y	Z	U
01	9 <i>b</i>	.m		-0.11454(7) 1.11454(7)	0.04555(15)	
02	9 <i>b</i>	.m		-0.2244(2) 0.88780(8)	0.07218(14)	
O3	3 <i>a</i>	3m			0 1.00000	0.2337(2)	
P2	3 <i>a</i>	3m			0 1.00000	0.34061(6)	
K1	3 <i>a</i>	3m			0 1.00000	0.03805(6)	
C1	18c	1		-0.2200(2) 1.0546(2)	0.0852(2)	
H1A	18 <i>c</i>	1		-0.2605(2) 1.0914(2)	0.0724(2)	0.0740
H1B	18 <i>c</i>	1		-0.2153(2) 1.0487(2)	0.1544(2)	0.0740
C2	18c	1		-0.2761(2) 0.9452(2)	0.0416(2)	
H2A	18 <i>c</i>	1		-0.3516(2) 0.9069(2)	0.0613(2)	0.0780
H2B	18 <i>c</i>	1		-0.2734(2) 0.9511(2)	-0.0280(2)	0.0780
C3	9 <i>b</i>	.m		0.06845(1	1) 0.93155(11)	0.3867(2)	
C4	9 <i>b</i>	.m		0.08191(1	4) 0.91809(14)	0.4843(2)	
H4	9 <i>b</i>	.m		0.05473(1	4) 0.94527(14)	0.5307(2)	0.0790
C5	9 <i>b</i>	.m		0.1355(2) 0.8645(2)	0.5115(3)	
H5	9 <i>b</i>	.m		0.1442(2) 0.8558(2)	0.5767(3)	0.1000
C6	9 <i>b</i>	.m		0.1760(2) 0.8240(2)	0.4457(3)	
H6	9 <i>b</i>	.m		0.2119(2) 0.7881(2)	0.4657(3)	0.0990
C7	9 <i>b</i>	.m		0.16369(1	4) 0.83631(14)	0.3489(3)	
H7	9 <i>b</i>	.m		0.19135(1	4) 0.80865(14)	0.3034(3)	0.0830
C8	9 <i>b</i>	.m		0.11001(1	2) 0.88999(12)	0.3197(2)	
H8	9 <i>b</i>	.m		0.10177(1	2) 0.89823(12)	0.2544(2)	0.0600
04	9 <i>b</i>	.m	0.33	-0.0412(8) 0.9794(4)	-0.1557(5)	
C9	3 <i>a</i>	3m			0 1.00000	-0.2356(6)	
N1	18 <i>c</i>	1	0.17	0.0363(5	4) 1.0426(21)	-0.3141(7)	
Atom	<i>U</i> ₁₁	l	⁷ 22	U33	<i>U</i> ₁₂	<i>U</i> ₁₃	U23
01	0.0491(8	B) 0.	0491(8)	0.0471(10)	0.0286(10)	-0.0018(5)	0.0018(5)
O2	0.0379(9	ý) 0.	0484(8)	0.0532(11)	0.0189(5)	-0.0071(8)	-0.0035(4)
O3	0.0644(14) 0.0	644(14)	0.0235(13)	0.0322(7)	0.00000	0.00000
P2	0.0429(4) 0.	0429(4)	0.0232(6)	0.0214(2)	0.00000	0.00000
K1	0.0391(3	b) 0.	0391(3)	0.0343(5)	0.01953(15)	0.00000	0.00000
C1	0.0531(12	á 00	653(13)	0.080(2)	0.0392(10)	0.0101(11)	0.0061(11)

01	0.0491(8)	0.0491(8)	0.0471(10)	0.0286(10)	-0.0018(5)	0.0018(5)
O2	0.0379(9)	0.0484(8)	0.0532(11)	0.0189(5)	-0.0071(8)	-0.0035(4)
O3	0.0644(14)	0.0644(14)	0.0235(13)	0.0322(7)	0.00000	0.00000
P2	0.0429(4)	0.0429(4)	0.0232(6)	0.0214(2)	0.00000	0.00000
K1	0.0391(3)	0.0391(3)	0.0343(5)	0.01953(15)	0.00000	0.00000
C1	0.0531(12)	0.0653(13)	0.080(2)	0.0392(10)	0.0101(11)	0.0061(11)
C2	0.0426(11)	0.0669(13)	0.089(2)	0.029(1)	-0.0100(11)	0.0037(12)
C3	0.0407(9)	0.0407(9)	0.0420(12)	0.0175(12)	-0.0020(5)	0.0020(5)
C4	0.082(2)	0.082(2)	0.0450(15)	0.051(2)	-0.0073(7)	0.0073(7)
C5	0.090(2)	0.090(2)	0.079(2)	0.052(2)	-0.0203(11)	0.0203(11)
C6	0.0522(14)	0.0522(14)	0.135(4)	0.020(2)	-0.0202(13)	0.0202(13)
C7	0.0411(11)	0.0411(11)	0.120(3)	0.0176(13)	0.0084(10)	-0.0084(10)
C8	0.0419(11)	0.0419(11)	0.060(2)	0.0163(13)	0.0049(8)	-0.0049(8)
O4	0.158(14)	0.128(7)	0.050(4)	0.079(7)	0.002(4)	0.001(2)
C9	0.110(4)	0.110(4)	0.051(4)	0.055(2)	0.00000	0.00000
N1	0.134(40)	0.198(30)	0.032(3)	0.112(14)	0.027(9)	0.035(8)

H10 Einkristall-Röntgenstrukturanalyse von

[K([18]krone-6)(SCN)(OPPh₃)]

H10.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Siehe Tabelle E7.

H10.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

Atom	Wyck.	Symm.	Occ.	X	У	Z	U
01	9 <i>b</i>	.m		1.11369(8)	0.2274(2)	0.91024(15)	
O2	9 <i>b</i>	.m		0.88834(8)	0.11166(8)	0.88310(13)	
O3	3 <i>a</i>	3m		1.00000	Ó	0.7213(2)	
P2	3 <i>a</i>	3m		1.00000	0	0.61662(7)	
K1	3 <i>a</i>	3m		1.00000	0	0.90528(6)	
C1	18 <i>c</i>	1		1.0547(2)	0.2730(2)	0.8725(2)	
H1A	18 <i>c</i>	1		1.0486(2)	0.2630(2)	0.8051(2)	0.0900
H1B	18c	1		1.0915(2)	0.3497(2)	0.8854(2)	0.0900
C2	18 <i>c</i>	1		0.9457(2)	0.2197(2)	0.9155(2)	
H2A	18c	1		0.9516(2)	0.2210(2)	0.9833(2)	0.0940
H2B	18 <i>c</i>	1		0.9079(2)	0.2574(2)	0.8979(2)	0.0940
C3	9 <i>b</i>	.m		0.93217(12)	0.06783(12)	0.5720(2)	
C4	9 <i>b</i>	.m		0.89082(14)	0.10918(14)	0.6365(3)	
H4	9 <i>b</i>	.m		0.89858(14)	0.10142(14)	0.7003(3)	0.0810
C5	9 <i>b</i>	.m		0.8378(2)	0.1622(2)	0.6066(4)	
H5	9 <i>b</i>	.m		0.8101(2)	0.1899(2)	0.6505(4)	0.1110
C6	9 <i>b</i>	.m		0.8258(2)	0.1742(2)	0.5138(4)	
H6	9 <i>b</i>	.m		0.7900(2)	0.2100(2)	0.4945(4)	0.1250
C7	9 <i>b</i>	.m		0.8657(2)	0.1343(2)	0.4497(3)	
H7	9 <i>b</i>	.m		0.8572(2)	0.1428(2)	0.3862(3)	0.1360
C8	9 <i>b</i>	.m		0.9195(2)	0.0805(2)	0.4775(3)	
H8	9 <i>b</i>	.m		0.9467(2)	0.0533(2)	0.4328(3)	0.1130
S1	9 <i>b</i>	.m	0.33	0.9711(3)	-0.0579(5)	1.2563(4)	
C9	18c	1	0.17	0.9676(30)	-0.0015(49)	1.1592(12)	
N1	18 <i>c</i>	1	0.17	0.9800(52)	0.0430(46)	1.1117(7)	

Atom	<i>U</i> ₁₁	U22	U33	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
01	0.0553(8)	0.0450(11)	0.0752(14)	0.0225(5)	-0.0021(5)	-0.0042(10)
O2	0.0541(8)	0.0541(8)	0.0803(14)	0.0308(10)	0.0061(5)	-0.0061(5)
O3	0.078(2)	0.078(2)	0.043(2)	0.0390(8)	0.00000	0.00000
P2	0.0528(5)	0.0528(5)	0.0407(6)	0.0264(2)	0.00000	0.00000
K1	0.0453(3)	0.0453(3)	0.0546(6)	0.0226(2)	0.00000	0.00000
C1	0.0730(15)	0.0441(12)	0.107(2)	0.0286(11)	-0.0045(14)	0.0010(12)
C2	0.0728(14)	0.0584(13)	0.113(2)	0.0400(12)	-0.0006(13)	-0.0145(12)
C3	0.0491(10)	0.0491(10)	0.070(2)	0.0225(12)	-0.0026(7)	0.0026(7)
C4	0.0502(12)	0.0502(12)	0.097(2)	0.0207(14)	0.0055(8)	-0.0055(8)
C5	0.0489(14)	0.0489(14)	0.173(4)	0.020(2)	0.0071(13)	-0.0071(13)
C6	0.063(2)	0.063(2)	0.181(5)	0.027(2)	-0.022(2)	0.022(2)
C7	0.125(3)	0.125(3)	0.113(3)	0.080(3)	-0.0237(14)	0.0237(14)
C8	0.111(2)	0.111(2)	0.077(2)	0.069(3)	-0.0109(9)	0.0109(9)
S1	0.177(4)	0.210(6)	0.134(3)	0.105(3)	0.006(2)	0.013(4)
C9	0.094(26)	0.098(29)	0.104(11)	-0.056(25)	0.072(20)	-0.032(25)
N1	0.110(48)	0.045(9)	0.067(6)	-0.007(22)	-0.002(15)	-0.017(10)

H11 Einkristall-Röntgenstrukturanalyse von Ph₃PNSiMe₃·ICN

H11.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Siehe Tabelle E2.

Atom	Wyck.	Symm.	Х	у	Z	U
C1	8 <i>f</i>	1	0.8123(4)	-0.0328(14)	0.4608(3)	
C2	8f	1	0.6614(5)	-0.4180(15)	0.2921(3)	
C3	8 <i>f</i>	1	0.5595(3)	-0.2639(12)	0.4327(2)	
C4	8 <i>f</i>	1	0.5192(4)	-0.1650(12)	0.4264(2)	
H4	8 <i>f</i>	1	0.5241(4)	-0.0625(12)	0.4185(2)	0.0660
C5	8 <i>f</i>	1	0.4721(4)	-0.2172(15)	0.4317(2)	
Н5	8f	1	0.4452(4)	-0.1494(15)	0.4276(2)	0.0760
C6	8 <i>f</i>	1	0.4642(4)	-0.3670(17)	0.4429(2)	
H6	8f	1	0.4322(4)	-0.4018(17)	0.4465(2)	0.0810
C7	8f	1	0.5039(5)	-0.4667(13)	0.4487(2)	
H7	8f	1	0.4987(5)	-0.5696(13)	0.4563(2)	0.0950
C8	8f	1	0.5511(4)	-0.4161(13)	0.4434(2)	
H8	8f	1	0.5776(4)	-0.4855(13)	0.4471(2)	0.0760
C9	8 <i>f</i>	1	0.6170(3)	-0.0607(12)	0.3951(2)	
C10	8 <i>f</i>	1	0.6317(3)	0.0966(14)	0.3962(2)	
H10	8f	1	0.6453(3)	0.1387(14)	0.4147(2)	0.0680
C11	8 <i>f</i>	1	0.6267(4)	0.1933(13)	0.3701(3)	
H11	8f	1	0.6367(4)	0.3000(13)	0.3711(3)	0.0960
C12	8 <i>f</i>	1	0.6070(4)	0.1318(18)	0.3427(3)	
H12	8f	1	0.6040(4)	0.1970(18)	0.3251(3)	0.0990
C13	8 <i>f</i>	1	0.5918(4)	-0.0253(18)	0.3410(2)	
H13	8f	1	0.5782(4)	-0.0664(18)	0.3224(2)	0.0960
C14	8 <i>f</i>	1	0.5969(3)	-0.1216(12)	0.3671(3)	
H14	8 <i>f</i>	1	0.5867(3)	-0.2281(12)	0.3661(3)	0.0790
C15	8f	1	0.6631(3)	-0.3472(10)	0.4227(2)	
C16	8 <i>f</i>	1	0.6837(4)	-0.3755(12)	0.3938(2)	
H16	8f	1	0.6749(4)	-0.3114(12)	0.3767(2)	0.0700
C17	8 <i>f</i>	1	0.7169(4)	-0.4990(16)	0.3908(3)	
H17	8f	1	0.7300(4)	-0.5199(16)	0.3714(3)	0.0950
C18	8 <i>f</i>	1	0.7310(3)	-0.5915(13)	0.4158(4)	
H18	8 <i>f</i>	1	0.7542(3)	-0.6725(13)	0.4136(4)	0.0930
C19	8f	1	0.7110(4)	-0.5657(13)	0.4445(3)	
H19	8f	1	0.7202(4)	-0.6308(13)	0.4613(3)	0.0810
C20	8f	1	0.6773(3)	-0.4434(12)	0.4482(2)	
H20	8 <i>f</i>	1	0.6641(3)	-0.4250(12)	0.4676(2)	0.0690
C21	8 <i>f</i>	1	0.5995(4)	-0.0133(11)	0.1423(2)	
C22	8 <i>f</i>	1	0.6364(4)	0.0359(13)	0.1231(2)	
H22	8 <i>f</i>	1	0.6677(4)	-0.0099(13)	0.1254(2)	0.0860
C23	8 <i>f</i>	1	0.6281(6)	0.1511(17)	0.1004(3)	
H23	8 <i>f</i>	1	0.6534(6)	0.1839(17)	0.0877(3)	0.1200
C24	8 <i>f</i>	1	0.5819(9)	0.2155(15)	0.0972(3)	
H24	8 <i>f</i>	1	0.5761(9)	0.2944(15)	0.0821(3)	0.1330
C25	8f	1	0.5435(6)	0.1683(17)	0.1153(4)	
H25	8 <i>f</i>	1	0.5119(6)	0.2119(17)	0.1123(4)	0.1180
C26	8 <i>f</i>	1	0.5532(5)	0.0537(14)	0.1381(2)	
H26	8 <i>f</i>	1	0.5279(5)	0.0214(14)	0.1509(2)	0.0920
C27	8 <i>f</i>	1	0.5587(3)	-0.2723(12)	0.1766(2)	
C28	8f	1	0.5396(5)	-0.3566(14)	0.1511(3)	
H28	8 <i>f</i>	1	0.5560(5)	-0.3529(14)	0.1324(3)	0.1090
C29	8f	1	0.4967(5)	-0.4459(16)	0.1526(4)	
H29	8 <i>f</i>	1	0.4840(5)	-0.4991(16)	0.1350(4)	0.1290
C30	8 <i>f</i>	1	0.4734(6)	-0.4556(18)	0.1797(5)	
H30	8 <i>f</i>	1	0.4455(6)	-0.5205(18)	0.1811(5)	0.1500
C31	8 <i>f</i>	1	0.4899(6)	-0.3726(24)	0.2047(4)	
H31	8 <i>f</i>	1	0.4728(6)	-0.3778(24)	0.2232(4)	0.1540
C32	8f	1	0.5327(5)	-0.2779(16)	0.2034(3)	
H32	8 <i>f</i>	1	0.5435(5)	-0.2188(16)	0.2207(3)	0.1150
C33	8 <i>f</i>	1	0.6634(4)	-0.2704(11)	0.1627(2)	
C34	8f	1	0.7086(5)	-0.2535(14)	0.1775(2)	
H34	8f	1	0.7123(5)	-0.1809(14)	0.1939(2)	0.0940

H11.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

C35	8f	1	0.7492(5)	-0.3415(21)	0.1688(3)	
H35		1	0.7799(5)	-0.3266(21)	0.1789(3)	0.1270
C36	$\dot{8f}$	1	0.7439(6)	-0.4510(17)	0.1450(4)	
H36		1	0.7707(6)	-0.5135(17)	0.1394(4)	0.1300
C37	$\dot{8f}$	1	0.6989(7)	-0.4675(18)	0.1297(3)	
H37		1	0.6953(7)	-0.5393(18)	0.1131(3)	0.1560
C38		1	0.6594(4)	-0.3795(16)	0.1384(3)	
H38	8 <i>f</i>	1	0.6290(4)	-0.3928(16)	0.1279(3)	0.1300
C39	8 <i>f</i>	1	0.5644(3)	-0.1358(11)	0.5083(2)	0.069(3)
H39A	8 <i>f</i>	1	0.5399(3)	-0.1670(11)	0.4927(2)	0.1040
H39B	8 <i>f</i>	1	0.5486(3)	-0.0801(11)	0.5248(2)	0.1040
H39C	8 <i>f</i>	1	0.5808(3)	-0.2296(11)	0.5165(2)	0.1040
C40	8 <i>f</i>	1	0.6568(3)	0.0541(12)	0.5216(2)	0.076(3)
H40A	8 <i>f</i>	1	0.6733(3)	-0.0407(12)	0.5293(2)	0.1140
H40B	8 <i>f</i>	1	0.6403(3)	0.1055(12)	0.5383(2)	0.1140
H40C	8 <i>f</i>	1	0.6807(3)	0.1263(12)	0.5133(2)	0.1140
C41	8 <i>f</i>	1	0.5799(4)	0.1869(12)	0.4765(2)	0.085(3)
H41A	8 <i>f</i>	1	0.5557(4)	0.1618(12)	0.4603(2)	0.1270
H41B	8 <i>f</i>	1	0.6043(4)	0.2583(12)	0.4685(2)	0.1270
H41C	8 <i>f</i>	1	0.5639(4)	0.2375(12)	0.4936(2)	0.1270
C42	8 <i>f</i>	1	0.5854(7)	0.1690(29)	0.2484(5)	0.246(9)
H42A	8 <i>f</i>	1	0.5874(7)	0.0879(29)	0.2643(5)	0.3690
H42B	8 <i>f</i>	1	0.5528(7)	0.1679(29)	0.2386(5)	0.3690
H42C	8 <i>f</i>	1	0.5916(7)	0.2722(29)	0.2577(5)	0.3690
C43	8 <i>f</i>	1	0.6220(6)	0.2926(21)	0.1918(4)	0.185(7)
H43A	8 <i>f</i>	1	0.6451(6)	0.2805(21)	0.1755(4)	0.2780
H43B	8 <i>f</i>	1	0.6275(6)	0.3936(21)	0.2021(4)	0.2780
H43C	8 <i>f</i>	1	0.5888(6)	0.2895(21)	0.1830(4)	0.2780
C44	8 <i>f</i>	1	0.6900(7)	0.1570(27)	0.2433(5)	0.242(9)
H44A	8 <i>f</i>	1	0.7175(7)	0.1384(27)	0.2301(5)	0.3630
H44B	8 <i>f</i>	1	0.6913(7)	0.0822(27)	0.2603(5)	0.3630
H44C	8 <i>f</i>	1	0.6917(7)	0.2644(27)	0.2513(5)	0.3630
N1	8 <i>f</i>	1	0.6407(2)	-0.0916(7)	0.46001(13)	0.043(2)
N2	8 <i>f</i>	1	0.8547(4)	-0.0270(13)	0.4620(2)	0.115(3)
N3	8 <i>f</i>	1	0.6252(2)	-0.0637(8)	0.20672(15)	0.058(2)
N4	8 <i>f</i>	1	0.6664(4)	-0.5017(15)	0.3137(3)	0.134(4)
Si1	8 <i>f</i>	1	0.61070(9)	-0.0013(3)	0.49050(5)	
Si2	8 <i>f</i>	1	0.63044(14)	0.1297(4)	0.21997(6)	
P1	8 <i>f</i>	1	0.62178(8)	-0.1836(3)	0.42996(5)	
P2	8 <i>f</i>	1	0.61281(9)	-0.1475(3)	0.17487(5)	
I1	8 <i>f</i>	1	0.73765(2)	-0.05623(7)	0.46044(1)	
12	8 <i>f</i>	1	0.64752(3)	-0.27019(9)	0.25488(1)	

Atom	<i>U</i> ₁₁	U ₂₂	U33	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
C1	0.037(7)	0.098(10)	0.161(11)	-0.005(6)	0.004(7)	-0.033(8)
C2	0.165(13)	0.099(10)	0.083(8)	0.013(9)	0.012(8)	0.027(7)
C3	0.044(7)	0.037(7)	0.058(6)	-0.010(6)	0.001(5)	0.002(5)
C4	0.043(7)	0.053(7)	0.070(6)	0.000(7)	0.006(5)	0.007(5)
C5	0.040(8)	0.069(10)	0.081(7)	-0.010(6)	0.008(5)	-0.011(6)
C6	0.040(8)	0.076(9)	0.086(7)	-0.025(8)	0.013(6)	-0.009(6)
C7	0.058(9)	0.061(8)	0.119(9)	-0.020(8)	0.018(7)	0.018(6)
C8	0.039(8)	0.056(9)	0.096(7)	-0.002(6)	0.005(5)	0.003(6)
C9	0.035(5)	0.052(8)	0.047(6)	-0.011(5)	0.002(4)	-0.001(5)
C10	0.053(6)	0.060(8)	0.056(7)	-0.011(6)	-0.005(5)	0.009(6)
C11	0.086(9)	0.063(8)	0.091(9)	-0.007(6)	0.007(7)	0.015(9)
C12	0.088(9)	0.094(12)	0.065(9)	0.010(8)	0.008(7)	0.041(8)
C13	0.093(9)	0.094(11)	0.053(8)	-0.012(7)	-0.001(6)	0.017(7)
C14	0.066(7)	0.065(7)	0.065(7)	-0.012(5)	0.000(6)	0.011(7)
C15	0.034(6)	0.036(6)	0.056(6)	-0.009(4)	0.002(5)	-0.003(5)
C16	0.056(7)	0.052(7)	0.066(8)	0.007(6)	-0.002(6)	-0.009(5)
C17	0.075(9)	0.095(10)	0.067(8)	0.004(8)	0.008(6)	-0.022(8)
C18	0.042(7)	0.077(9)	0.114(10)	0.019(6)	0.006(8)	-0.038(9)
C19	0.055(7)	0.057(8)	0.089(9)	0.004(6)	-0.013(7)	-0.005(6)
C20	0.048(7)	0.053(7)	0.070(7)	0.004(6)	-0.005(5)	-0.008(6)
C21	0.069(8)	0.047(7)	0.040(6)	-0.004(6)	-0.003(6)	0.002(5)
C22	0.102(9)	0.063(8)	0.050(6)	-0.005(6)	0.000(7)	0.010(6)
C23	0.159(15)	0.079(10)	0.064(9)	-0.021(9)	0.010(8)	0.009(8)
C24	0.205(19)	0.047(9)	0.077(10)	-0.012(12)	-0.047(13)	0.004(7)
C25	0.124(13)	0.072(10)	0.097(10)	0.021(9)	-0.036(10)	-0.012(8)
C26	0.100(11)	0.061(8)	0.068(8)	0.008(7)	-0.020(6)	0.002(7)
C27	0.053(7)	0.068(7)	0.050(6)	0.008(5)	0.000(6)	0.007(6)
C28	0.086(10)	0.082(9)	0.107(10)	-0.011(8)	0.035(8)	-0.026(8)
C29	0.074(11)	0.089(11)	0.158(15)	-0.009(9)	-0.007(9)	-0.016(9)
C30	0.099(12)	0.098(12)	0.178(16)	-0.025(9)	0.007(14)	0.040(12)

C31	0.082(12)	0.201(17)	0.103(12)	-0.031(11)	0.018(9)	0.030(11)
C32	0.079(9)	0.150(12)	0.058(8)	-0.027(9)	-0.008(7)	0.004(7)
C33	0.063(8)	0.050(7)	0.059(6)	-0.003(5)	0.017(6)	0.003(6)
C34	0.069(9)	0.103(10)	0.064(7)	0.007(8)	-0.001(7)	0.000(6)
C35	0.068(10)	0.148(13)	0.103(10)	0.037(10)	0.012(8)	0.005(10)
C36	0.099(14)	0.079(10)	0.152(13)	0.016(8)	0.066(11)	0.001(10)
C37	0.097(12)	0.128(13)	0.169(14)	-0.037(11)	0.048(12)	-0.076(10)
C38	0.056(9)	0.125(11)	0.146(11)	-0.003(8)	0.023(8)	-0.068(10)
Si1	0.044(2)	0.049(2)	0.058(2)	0.0008(12)	0.0076(13)	-0.0026(12)
Si2	0.145(3)	0.068(2)	0.063(2)	0.006(2)	-0.014(2)	-0.010(2)
P1	0.0345(14)	0.041(2)	0.0510(14)	-0.0036(11)	0.0043(11)	0.0018(11)
P2	0.061(2)	0.051(2)	0.0413(14)	0.0008(13)	0.0008(12)	0.0020(12)
I1	0.0402(4)	0.0559(5)	0.0693(5)	-0.0062(3)	0.0045(3)	-0.0058(3)
I2	0.0880(6)	0.0827(6)	0.0556(4)	0.0034(4)	-0.0035(4)	0.0095(3)

H12 Einkristall-Röntgenstrukturanalyse von (PN(NCS)2)3

H12.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Siehe Tabelle E12.

Atom	Wyck.	Symm.	x	у	z
N1	4e	1	0.1514(6)	0.23603(12)	0.4697(3)
N2	4e	1	0.2144(6)	0.24102(13)	0.2842(3)
N3	4e	1	0.0938(6)	0.30289(12)	0.3665(3)
N4	4e	1	0.2194(7)	0.30223(15)	0.5588(4)
N5	4e	1	-0.0898(6)	0.28362(14)	0.4977(4)
N6	4e	1	0.3971(6)	0.19562(15)	0.4199(4)
N7	4e	1	0.0932(6)	0.17704(14)	0.3487(4)
N8	4e	1	0.2169(7)	0.3090(2)	0.2047(4)
N9	4e	1	-0.0693(7)	0.2749(2)	0.1937(4)
N10	4e	1	0.0186(6)	0.50661(13)	0.8628(3)
N11	4e	1	0.1428(6)	0.44679(12)	0.7739(3)
N12	4e	1	0.0974(6)	0.51576(13)	0.6824(3)
N13	4e	1	0.1427(7)	0.5717(2)	0.8151(4)
N14	4e	1	-0.1572(7)	0.5531(2)	0.7309(4)
N15	4e	1	-0.0715(7)	0.4350(2)	0.8900(4)
N16	4e	1	0.2256(6)	0.4552(2)	0.9658(4)
N17	4e	1	0.0506(7)	0.4527(2)	0.5789(4)
N18	4e	1	0.3506(7)	0.4713(2)	0.6640(4)
P1	4e	1	0.0977(2)	0.27986(4)	0.46518(9)
P2	4e	1	0.2111(2)	0.21595(4)	0.37949(10)
P3	4e	1	0.1177(2)	0.28075(4)	0.26943(10)
P4	4e	1	0.0298(2)	0.53363(4)	0.77180(11)
P5	4e	1	0.0779(2)	0.46349(4)	0.86594(10)
P6	4e	1	0.1548(2)	0.47263(4)	0.68153(10)
S1	4e	1	0.3747(3)	0.36036(6)	0.6747(2)
S2	4e	1	-0.4177(2)	0.30941(6)	0.4363(2)
S3	4e	1	0.7420(2)	0.19134(5)	0.44597(14)
S4	4e	1	-0.1450(2)	0.14462(5)	0.19941(13)
S5	4 <i>e</i>	1	0.1765(3)	0.36992(5)	0.07739(14)
S6	4e	1	-0.4039(2)	0.25470(6)	0.1803(2)
S7	4 <i>e</i>	1	0.3238(3)	0.63677(6)	0.8067(2)
S8	4 <i>e</i>	1	-0.4211(4)	0.58948(11)	0.6159(2)
S9	4e	1	-0.3950(2)	0.41488(6)	0.9019(2)
S10	4e	1	0.4619(2)	0.47616(6)	1.13045(12)
SII	4e	1	-0.0580(3)	0.39260(5)	0.45499(13)
812	4e	1	0.6591(3)	0.46107(9)	0.6204(2)
CI	4 <i>e</i>	1	0.2850(7)	0.3280(2)	0.6063(4)
C2	4e	1	-0.2314(8)	0.2952(2)	0.4684(4)
03	4e	1	-0.0103(7)	0.16346(14)	0.2815(4)
C4	4e	1	0.5461(7)	0.19491(14)	0.4289(4)
05	40	1	0.1940(7)	0.3356(2)	0.1495(4)
00	4e	1	-0.2134(8)	0.265/(2)	0.1902(4)
C/	40	1	0.2200(8)	0.6000(2)	0.8091(4)
C8	4e	1	-0.2694(8)	0.568/(2)	0.6/89(5)
09	4e	1	-0.2136(8)	0.42/3(2)	0.8948(4)

H12.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

	C10	4 <i>e</i> 1	0.3269(7)	0.46561(15)	1.0369(4)	
	C11	4 <i>e</i> 1	0.0069(7)	0.4258(2)	0.5269(4)	
	C12	4 <i>e</i> 1	0.4810(8)	0.4667(2)	0.6442(4)	
						-
Atom	<i>U</i> ₁₁	U22	<i>U</i> 33	U ₁₂	U ₁₃	U23
N1	0.074(3)	0.053(2)	0.043(2)	0.007(2)	0.011(2)	0.005(2)
N2	0.065(3)	0.061(3)	0.061(3)	0.004(2)	0.020(2)	-0.006(2)
N3	0.071(3)	0.048(2)	0.052(2)	0.005(2)	0.010(2)	0.002(2)
N4	0.088(4)	0.076(3)	0.058(3)	-0.008(3)	0.002(3)	-0.015(3)
N5	0.067(3)	0.069(3)	0.070(3)	0.005(3)	0.024(3)	0.001(2)
N6	0.050(3)	0.081(3)	0.100(4)	0.006(3)	0.005(3)	0.004(3)
N7	0.065(3)	0.066(3)	0.067(3)	-0.007(2)	0.012(2)	-0.006(2)
N8	0.086(4)	0.083(4)	0.070(3)	0.000(3)	0.029(3)	0.023(3)
N9	0.064(3)	0.114(4)	0.057(3)	-0.007(3)	-0.003(2)	0.003(3)
N10	0.071(3)	0.068(3)	0.050(2)	0.011(2)	0.021(2)	-0.001(2)
N11	0.071(3)	0.053(3)	0.060(3)	0.011(2)	0.008(2)	-0.003(2)
N12	0.082(3)	0.064(3)	0.056(3)	0.005(2)	0.023(2)	0.003(2)
N13	0.095(4)	0.064(3)	0.091(4)	-0.008(3)	0.006(3)	-0.008(3)
N14	0.070(3)	0.091(4)	0.098(4)	0.023(3)	0.010(3)	0.020(3)
N15	0.070(4)	0.092(4)	0.089(4)	-0.021(3)	0.011(3)	0.012(3)
N16	0.067(3)	0.087(4)	0.057(3)	-0.005(3)	0.000(3)	0.008(3)
N17	0.078(3)	0.087(4)	0.060(3)	0.003(3)	0.002(3)	-0.018(3)
N18	0.060(3)	0.123(5)	0.102(4)	0.002(3)	0.033(3)	-0.022(4)
P1	0.0557(8)	0.0531(8)	0.0428(7)	-0.0018(6)	0.0078(6)	-0.0034(6)
P2	0.0476(7)	0.0532(8)	0.0541(8)	0.0025(6)	0.0082(6)	-0.0020(6)
P3	0.0589(8)	0.0641(9)	0.0421(7)	-0.0024(7)	0.0095(6)	0.0041(6)
P4	0.0571(8)	0.0544(8)	0.0580(8)	0.0064(6)	0.0107(6)	-0.0005(7)
P5	0.0521(8)	0.0600(8)	0.0525(8)	0.0001(6)	0.0067(6)	0.0048(7)
P6	0.0500(8)	0.0653(9)	0.0534(8)	0.0013(7)	0.0115(6)	-0.0098(7)
S1	0.0968(13)	0.0943(13)	0.1002(14)	-0.0277(11)	-0.0020(11)	-0.0299(11)
S2	0.0675(11)	0.1077(14)	0.1088(14)	0.0134(10)	0.0211(10)	0.0125(11)
S3	0.0524(9)	0.0946(12)	0.1024(13)	0.0009(8)	0.0194(8)	-0.0101(10)
S4	0.0915(12)	0.0924(12)	0.0707(10)	-0.0234(10)	0.0036(9)	-0.0130(9)
S5	0.157(2)	0.0677(11)	0.0814(12)	-0.0067(11)	0.0274(12)	0.0176(9)
S6	0.0787(12)	0.1026(14)	0.0990(13)	-0.0207(10)	0.015(1)	-0.0077(11)
S7	0.152(2)	0.0808(13)	0.143(2)	-0.0388(14)	0.036(2)	-0.0134(13)
S8	0.145(2)	0.236(4)	0.132(2)	0.108(2)	-0.023(2)	0.025(2)
S9	0.0760(12)	0.0956(13)	0.134(2)	-0.0094(10)	0.0421(11)	-0.0049(12)
S10	0.0726(10)	0.1087(13)	0.0637(10)	-0.0096(9)	0.0008(8)	-0.0066(9)
S11	0.165(2)	0.0694(11)	0.0626(10)	-0.0269(12)	-0.0011(11)	-0.0016(8)
S12	0.0641(12)	0.193(3)	0.164(2)	-0.0058(14)	0.0461(13)	-0.056(2)
C1	0.051(3)	0.070(3)	0.047(3)	0.003(3)	0.008(2)	-0.001(3)
C2	0.075(4)	0.053(3)	0.057(3)	-0.007(3)	0.027(3)	-0.001(3)
C3	0.061(3)	0.046(3)	0.062(3)	0.002(2)	0.026(3)	0.004(3)
C4	0.061(3)	0.045(3)	0.052(3)	-0.001(2)	0.010(2)	-0.002(2)
C5	0.073(4)	0.065(4)	0.055(3)	-0.004(3)	0.019(3)	-0.008(3)
C6	0.075(4)	0.070(4)	0.047(3)	0.001(3)	0.001(3)	-0.003(3)
C7	0.084(4)	0.056(4)	0.060(4)	0.012(3)	0.009(3)	-0.007(3)
C8	0.078(4)	0.077(4)	0.063(4)	0.018(3)	0.010(3)	-0.003(3)
C9	0.073(4)	0.052(3)	0.060(3)	0.000(3)	0.010(3)	-0.002(3)
C10	0.057(3)	0.055(3)	0.055(3)	0.004(2)	0.020(3)	0.011(3)
C11	0.060(3)	0.071(4)	0.049(3)	0.003(3)	0.010(3)	0.005(3)
C12	0.064(4)	0.064(4)	0.066(4)	-0.003(3)	0.008(3)	-0.017(3)

H13 Einkristall-Röntgenstrukturanalyse von [(Ph₃P)₂N]⁺Br⁻NCC(NH)C(NH)CN

H13.1 Kristalldaten und Angaben zu den Kristallstrukturbestimmungen

Siehe Tabelle E6.

H13.2 Atomkoordinaten und Auslenkungsparameter [in Å²]

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Atom	Wyck.	x	v	Z	U
P1 8c $0.00195(4)$ $0.40472(4)$ $0.12476(4)$ P2 8c $-0.00052(5)$ $0.33235(4)$ $0.24473(4)$ N1 8c $-0.00055(5)$ $0.35320(13)$ $0.18622(13)$ C1 8c $0.10284(17)$ $0.40633(14)$ $0.09218(18)$ H2 8c 0.12570 0.31030 0.11300 0.0420 C3 8c $0.2228(2)$ $0.3487(16)$ $0.06237(19)$ H3 8c $0.22546(2)$ 0.40200 0.01240 0.0510 C4 8c $0.2546(2)$ 0.40400 0.01240 0.0480 C5 8c 0.23340 0.49300 0.01280 0.0480 C6 8c 0.01500 0.50200 0.06210 0.0390 C7 8c $-0.03321(18)$ $0.48612(14)$ $0.1527(16)$ K8 0.06150 0.48770 0.23000 0.0440 C9 8c $-0.0616(2)$ $0.5752(17)$ $0.2362(19)$	Brl	8 <i>c</i>	0.13273(2)	0.17481(2)	0.12233(2)	
P2 8c $-0.00625(5)$ $0.32835(4)$ $0.24473(4)$ N1 8c $-0.00055(15)$ $0.35329(13)$ $0.18622(13)$ C1 8c $0.10284(17)$ $0.40631(4)$ $0.09161(15)$ C2 8c 0.12270 0.31030 0.01300 0.01300 M2 8c $0.2228(2)$ $0.34726(18)$ 0.06220 0.0510 M3 8c $0.2228(2)$ $0.34726(18)$ 0.06220 0.0510 C4 8c $0.2330(16)$ $0.0328(18)$ 0.01240 0.0510 C5 8c $0.2112(2)$ $0.46089(18)$ $0.0328(18)$ 0.0480 H5 8c $0.2332(18)$ $0.48612(14)$ 0.01520 0.0430 C6 8c $0.0188(2)$ $0.5184(16)$ $0.2327(16)$ 0.0320 C7 8c $-0.0232(18)$ 0.48770 0.2300 0.0440 C9 8c $-0.018(2)$ $0.5725(17)$ $0.23642(19)$ 0.92720 H8 <t< td=""><td>P1</td><td>8<i>c</i></td><td>0.00195(4)</td><td>0.40472(4)</td><td>0.12476(4)</td><td></td></t<>	P1	8 <i>c</i>	0.00195(4)	0.40472(4)	0.12476(4)	
N1 $\&c$ $-0.00055(15)$ $0.35329(13)$ $0.18622(13)$ C1 $\&c$ $0.10284(17)$ $0.40633(14)$ $0.09218(18)$ H2 $\&c$ 0.112570 0.31030 0.01300 0.0420 C3 $\&c$ $0.228(2)$ $0.34726(18)$ $0.06237(19)$ H3 $\&c$ $0.2230(0)$ 0.030790 0.06220 0.0510 C4 $\&c$ $0.2546(2)$ 0.401200 0.01240 0.0510 C5 $\&c$ 0.23340 0.40230 0.01280 0.0480 C6 $\&c$ $0.13504(19)$ $0.46255(16)$ 0.06210 0.0390 C7 $\& & c$ 0.01500 0.50200 0.06200 0.0390 C7 $\& & c$ 0.01502 $0.5725(17)$ 0.23000 0.04480 C8 $\&e$ 0.01620 0.52720 0.0550 0.27520 0.0550 C10 $\& & c$ -0.07660 0.64920 0.22610 0.05660	P2	8 <i>c</i>	-0.06022(5)	0.32835(4)	0.24473(4)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1	8 <i>c</i>	-0.00055(15)	0.35329(13)	0.18622(13)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C1	8 <i>c</i>	0.10284(17)	0.40633(14)	0.09161(15)	
H2 8c 0.12570 0.31030 0.01300 0.0420 C3 8c $0.2228(2)$ $0.34726(18)$ $0.06237(19)$ H3 8c $0.22546(2)$ $0.40316(19)$ $0.03281(18)$ H4 8c $0.2546(2)$ $0.40316(19)$ $0.03281(18)$ H4 8c $0.212(2)$ $0.40089(18)$ $0.03281(18)$ H5 8c $0.21312(2)$ $0.40689(18)$ $0.03281(18)$ H5 8c 0.23340 0.49930 0.01280 0.0480 C6 8c $0.13504(19)$ $0.4625(16)$ $0.06212(16)$ 0.03700 H6 8c $0.0188(2)$ $0.51184(16)$ $0.20973(17)$ 0.23000 0.0440 C8 0.02680 0.4870 0.23000 0.0440 $0.9262(2)$ 0.0510 H9 8c 0.02680 0.58260 0.27520 0.0550 C10 8c -0.07660 0.64920 0.222610 0.05260 H10 8	C2	8 <i>c</i>	0.14728(19)	0.34857(16)	0.09218(18)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H2	8 <i>c</i>	0.12570	0.31030	0.11300	0.0420
H3 8c 0.25300 0.30790 0.06220 0.0510 C4 8c 0.2546(2) 0.40316(19) 0.03281(18) H4 8c 0.30560 0.40200 0.01240 0.0510 C5 8c 0.2112(2) 0.46689(18) 0.03281(18) 0.0480 C6 8c 0.13504(19) 0.46255(16) 0.06212(16) 0.0480 C6 8c -0.02332(18) 0.48612(14) 0.15327(16) 0.05200 0.0390 C7 8c -0.02332(18) 0.48612(14) 0.12377(16) 0.23000 0.0440 C9 8c -0.06150 0.48770 0.23000 0.0440 C9 8c -0.016(2) 0.57252(17) 0.2371(7) 0.211(2) H10 8c -0.07660 0.64920 0.22610 0.0560 C11 8c -0.07660 0.64920 0.22610 0.0540 C12 8c -0.0849(2) 0.52252(16) 0.12298(17) H14 H11 <	C3	8 <i>c</i>	0.2228(2)	0.34726(18)	0.06237(19)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H3	8 <i>c</i>	0.25300	0.30790	0.06220	0.0510
H4 8c 0.30650 0.40200 0.01240 0.0510 C5 8c 0.2112(2) 0.46089(18) 0.03281(18) 0.0480 C6 8c 0.13504(19) 0.46255(16) 0.06212(16) 0.0480 C6 8c 0.13504(19) 0.46255(16) 0.06212(16) 0.0390 C7 8c -0.0232(18) 0.48612(14) 0.15327(16) 0.0480 C8 c 0.0188(2) 0.51184(16) 0.20973(17) 0.23000 0.0440 C9 8c -0.0016(2) 0.57252(17) 0.2342(19) 0.050 H9 8c 0.02680 0.58960 0.27520 0.0550 C10 8c -0.07660 0.64920 0.22610 0.0540 C11 8c -0.1370(2) 0.58404(17) 0.1502(2) 0.1114 H11 8c -0.1490 0.60950 0.12940 0.0540 C12 8c -0.01310(2) 0.37353(15) -0.01284(16) 0.1122 H11	C4	8 <i>c</i>	0.2546(2)	0.40316(19)	0.03281(18)	
$\begin{array}{c ccccc} CS & 8c & 0.2112(2) & 0.46089(18) & 0.03281(18) \\ HS & 8c & 0.23340 & 0.49930 & 0.01280 & 0.0480 \\ C6 & 8c & 0.13504(19) & 0.46255(16) & 0.06212(16) \\ H6 & 8c & 0.02332(18) & 0.48612(14) & 0.15327(16) \\ C8 & 8c & 0.0188(2) & 0.51184(16) & 0.20973(17) \\ H8 & 8c & 0.06150 & 0.48770 & 0.23000 & 0.0440 \\ C9 & 8c & -0.0016(2) & 0.57252(17) & 0.23642(19) \\ H9 & 8c & 0.02680 & 0.58960 & 0.27520 & 0.0550 \\ C10 & 8c & -0.0625(2) & 0.60787(17) & 0.2071(2) \\ H10 & 8c & -0.07660 & 0.64920 & 0.22610 & 0.0560 \\ C11 & 8c & -0.07660 & 0.64920 & 0.22610 & 0.0560 \\ C11 & 8c & -0.07660 & 0.64920 & 0.22610 & 0.0560 \\ C11 & 8c & -0.0137(2) & 0.58404(17) & 0.1502(2) \\ H11 & 8c & -0.137(2) & 0.58404(17) & 0.1502(2) \\ C12 & 8c & -0.0849(2) & 0.52252(16) & 0.12298(17) \\ H12 & 8c & -0.0810(2) & 0.37053(15) & -0.01284(16) \\ C14 & 8c & -0.0310(2) & 0.37053(15) & -0.01284(16) \\ H14 & 8c & 0.02520 & 0.37410 & -0.02660 & 0.0390 \\ C15 & 8c & -0.06310(2) & 0.35235(18) & -0.06750(18) \\ H15 & 8c & -0.06310(2) & 0.35235(18) & -0.06750(18) \\ H16 & 8c & -0.19730 & 0.35260 & -0.09410 & 0.0500 \\ C17 & 8c & -0.19730 & 0.35560 & -0.09410 & 0.0500 \\ C18 & 8c & -0.1628(2) & 0.34742(18) & -0.05673(19) \\ H17 & 8c & -0.25070 & 0.35560 & 0.01600 & 0.0510 \\ C19 & 8c & -0.16710 & 0.35660 & 0.10780 & 0.0450 \\ C19 & 8c & -0.16710 & 0.35660 & 0.01600 & 0.0510 \\ C19 & 8c & -0.16710 & 0.35660 & 0.01780 & 0.0450 \\ C19 & 8c & -0.13724(19) & 0.38626(15) & 0.26879(16) \\ C20 & 8c & -0.1449(2) & 0.37788(18) & 0.02519(17) \\ H12 & 8c & -0.28510 & 0.52980 & 0.34040 & 0.0550 \\ C22 & 8c & -0.1475(2) & 0.48606(18) & 0.2813(19) \\ H12 & 8c & -0.28510 & 0.52980 & 0.34040 & 0.0550 \\ C23 & 8c & -0.28510 & 0.52940 & 0.29460 & 0.0580 \\ C23 & 8c & -0.28510 & 0.52940 & 0.29460 & 0.0580 \\ C23 & 8c & -0.28510 & 0.52940 & 0.29460 & 0.0580 \\ C23 & 8c & -0.28510 & 0.52940 & 0.29460 & 0.0580 \\ C23 & 8c & -0.28510 & 0.22467(16) & 0.1557(17) \\ H24 & 8c & -0.229(10 & 0.34270 & 0.21650 & 0.0450 \\ C25 & 8c & -0.10954(19) & 0.24400 & 0.12720 & 0.0440 \\ C27 & 8c & -0.1236(2) & 0.13925($	H4	8 <i>c</i>	0.30650	0.40200	0.01240	0.0510
H5 8c 0.23340 0.49930 0.01280 0.0480 C6 8c 0.13504(19) 0.46255(16) 0.06212(16) 0.0390 H6 8c 0.10500 0.50200 0.06200 0.0390 C7 8c -0.02332(18) 0.48612(14) 0.15327(16) 0.0390 C8 8c 0.01620 0.57152(17) 0.23642(19) 0.0440 H8 8c 0.02680 0.58960 0.27520 0.0550 C10 8c -0.0625(2) 0.60787(17) 0.22610 0.0540 C11 8c -0.1037(2) 0.58404(17) 0.1502(2) 0.111 H10 8c -0.1380 0.50570 0.08430 0.0420 C12 8c -0.0849(2) 0.52252(16) 0.1284(16) 0.111 H12 8c -0.06216(18) 0.33338(14) 0.05268(15) 0.0440 C13 8c -0.06216(18) 0.33735(15) -0.01284(16) 0.11200 0.0490 C14	C5	8 <i>c</i>	0.2112(2)	0.46089(18)	0.03281(18)	
$\begin{array}{c ccccc} C6 & 8c & 0.13504(19) & 0.46255(16) & 0.06212(16) \\ \hline H6 & 8c & 0.10500 & 0.50200 & 0.06200 & 0.0390 \\ \hline C7 & 8c & -0.0232(18) & 0.48612(14) & 0.15327(16) \\ \hline C8 & 8c & 0.0188(2) & 0.51184(16) & 0.20973(17) \\ \hline H8 & 8c & 0.06150 & 0.48770 & 0.23000 & 0.0440 \\ \hline C9 & 8c & -0.02680 & 0.58960 & 0.27520 & 0.0550 \\ \hline C10 & 8c & -0.02680 & 0.58960 & 0.27520 & 0.0550 \\ \hline C10 & 8c & -0.02680 & 0.68960 & 0.27520 & 0.0550 \\ \hline C10 & 8c & -0.02680 & 0.68960 & 0.27520 & 0.0560 \\ \hline C11 & 8c & -0.07660 & 0.64920 & 0.22610 & 0.0560 \\ \hline C11 & 8c & -0.04490 & 0.60950 & 0.12940 & 0.0540 \\ \hline C12 & 8c & -0.0849(2) & 0.5252(16) & 0.12298(17) \\ \hline H11 & 8c & -0.14390 & 0.50570 & 0.08430 & 0.0420 \\ \hline C13 & 8c & -0.06216(18) & 0.38338(14) & 0.05268(15) \\ \hline C14 & 8c & -0.0310(2) & 0.37053(15) & -0.01284(16) \\ \hline H14 & 8c & 0.02520 & 0.37410 & -0.0286(16) \\ \hline H14 & 8c & -0.05940 & 0.34340 & -0.11220 & 0.0490 \\ \hline C15 & 8c & -0.0638(2) & 0.3525(18) & -0.06750(18) \\ \hline H15 & 8c & -0.1628(2) & 0.3742(18) & -0.05673(19) \\ \hline H16 & 8c & -0.16710 & 0.33560 & 0.01901 & 0.0500 \\ \hline C17 & 8c & -0.25070 & 0.35560 & 0.01600 & 0.0510 \\ \hline C18 & 8c & -0.16710 & 0.33560 & 0.01700 & 0.0510 \\ \hline C18 & 8c & -0.16710 & 0.33560 & 0.01700 & 0.0510 \\ \hline C19 & 8c & -0.16710 & 0.33560 & 0.01700 & 0.0510 \\ \hline C19 & 8c & -0.16710 & 0.33560 & 0.01600 & 0.0510 \\ \hline C19 & 8c & -0.16710 & 0.33560 & 0.01700 & 0.0510 \\ \hline C19 & 8c & -0.16710 & 0.33560 & 0.01700 & 0.0510 \\ \hline C19 & 8c & -0.16710 & 0.33560 & 0.01700 & 0.0510 \\ \hline C19 & 8c & -0.16710 & 0.33560 & 0.01600 & 0.0510 \\ \hline C19 & 8c & -0.16710 & 0.33560 & 0.01700 & 0.0500 \\ \hline C19 & 8c & -0.02870 & 0.52980 & 0.3440 & 0.0550 \\ \hline C20 & 8c & -0.16710 & 0.3806(18) & 0.28879(16) \\ \hline C20 & 8c & -0.16710 & 0.52980 & 0.3440 & 0.0550 \\ \hline C21 & 8c & -0.28510 & 0.52940 & 0.28879(16) \\ \hline C21 & 8c & -0.28510 & 0.52940 & 0.28479(16) \\ \hline C22 & 8c & -0.28510 & 0.52940 & 0.29460 & 0.0580 \\ \hline C23 & 8c & -0.28510 & 0.52940 & 0.29460 & 0.0580 \\ \hline C23 & 8c & -0.28510 & 0.52940 & 0.21767(16) \\ \hline C26 & 8c & -0.04710 & 0.24400 & 0.1557(1$	H5	8 <i>c</i>	0.23340	0.49930	0.01280	0.0480
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C6	8 <i>c</i>	0.13504(19)	0.46255(16)	0.06212(16)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H6	8 <i>c</i>	0.10500	0.50200	0.06200	0.0390
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C7	8 <i>c</i>	-0.02332(18)	0.48612(14)	0.15327(16)	
H8 8c 0.06150 0.48770 0.23000 0.0440 C9 8c $-0.0016(2)$ $0.57252(17)$ $0.23642(19)$ H9 8c 0.02680 0.58750 0.27520 0.0550 C10 8c -0.07660 0.64920 0.22610 0.0560 C11 8c -0.07660 0.64920 0.22610 0.05060 C11 8c $-0.077(2)$ $0.58404(17)$ $0.1502(2)$ H11 8c $-0.0137(2)$ $0.58404(17)$ $0.1502(2)$ H11 8c $-0.0137(2)$ $0.5252(16)$ $0.12298(17)$ H12 8c $-0.0849(2)$ $0.3252(16)$ $0.12298(17)$ H12 8c $-0.06216(18)$ $0.38338(14)$ $0.05268(15)$ C14 8c $-0.06216(18)$ $0.38338(14)$ 0.05260 0.37410 H14 8c $-0.0813(2)$ $0.35235(18)$ $-0.06750(18)$ H15 8c $-0.01628(2)$ $0.34742(18)$ $-0.0570(10)$ <	C8	8 <i>c</i>	0.0188(2)	0.51184(16)	0.20973(17)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H8	8 <i>c</i>	0.06150	0.48770	0.23000	0.0440
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C9	8 <i>c</i>	-0.0016(2)	0.57252(17)	0.23642(19)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H9	8 <i>c</i>	0.02680	0.58960	0.27520	0.0550
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C10	8 <i>c</i>	-0.0625(2)	0.60787(17)	0.2071(2)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H10	8 <i>c</i>	-0.07660	0.64920	0.22610	0.0560
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C11	8 <i>c</i>	-0.1037(2)	0.58404(17)	0.1502(2)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H11	8 <i>c</i>	-0.14490	0.60950	0.12940	0.0540
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C12	8 <i>c</i>	-0.0849(2)	0.52252(16)	0.12298(17)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H12	8 <i>c</i>	-0.11380	0.50570	0.08430	0.0420
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C13	8 <i>c</i>	-0.06216(18)	0.38338(14)	0.05268(15)	
H14 $\& c$ 0.02520 0.37410 -0.02060 0.0390 C15 $\& c$ $-0.0813(2)$ $0.35235(18)$ $-0.06750(18)$ H15 $\& c$ -0.05940 0.34340 -0.11220 0.0490 C16 $\& c$ $-0.1628(2)$ $0.34742(18)$ $-0.05673(19)$ H16 $\& c$ -0.19730 0.33560 -0.09410 0.0500 C17 $\& c$ $-0.1945(2)$ $0.35969(18)$ $0.00853(19)$ H17 $\& c$ -0.25070 0.35560 0.01600 0.0510 C18 $\& c$ -0.16710 0.38660 0.10780 0.0450 C19 $\& c$ -0.16710 0.38660 0.10780 0.0450 C19 $\& c$ $-0.13724(19)$ $0.38626(15)$ $0.26879(16)$ C20 $\& c$ -0.06360 0.44620 0.32480 0.0450 C21 $\& c$ -0.05670 0.52980 0.34040 0.0550 C21 $\& c$ $-0.2475(2)$ $0.48606(18)$ $0.28813(19)$ H21 $\& c$ -0.28510 0.52940 0.29460 0.0580 C23 $\& c$ $-0.2695(2)$ $0.43055(18)$ $0.2514(2)$ H23 $\& c$ -0.22910 0.34270 0.21650 0.0450 C24 $\& c$ -0.22910 0.34270 0.21650 0.0450 C25 $\& c$ $-0.0874(2)$ $0.22467(16)$ 0.12720 0.0440 C26 $\& c$ $-0.0874(2)$ $0.22467(16)$ 0.12720 0.0440 C26 $\& c$	C14	8 <i>c</i>	-0.0310(2)	0.37053(15)	-0.01284(16)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H14	8 <i>c</i>	0.02520	0.37410	-0.02060	0.0390
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C15	8 <i>c</i>	-0.0813(2)	0.35235(18)	-0.06750(18)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H15	8 <i>c</i>	-0.05940	0.34340	-0.11220	0.0490
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C16	8 <i>c</i>	-0.1628(2)	0.34742(18)	-0.05673(19)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H16	8 <i>c</i>	-0.19730	0.33560	-0.09410	0.0500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C17	8 <i>c</i>	-0.1945(2)	0.35969(18)	0.00853(19)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H17	8 <i>c</i>	-0.25070	0.35560	0.01600	0.0510
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C18	8 <i>c</i>	-0.1449(2)	0.37788(18)	0.06319(17)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H18	8 <i>c</i>	-0.16710	0.38660	0.10780	0.0450
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C19	8 <i>c</i>	-0.13724(19)	0.38626(15)	0.26879(16)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C20	8 <i>c</i>	-0.1160(2)	0.44219(16)	0.30591(17)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H20	8 <i>c</i>	-0.06360	0.44620	0.32480	0.0450
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C21	8 <i>c</i>	-0.1713(2)	0.49169(18)	0.31520(19)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H21	8 <i>c</i>	-0.15670	0.52980	0.34040	0.0550
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C22	8 <i>c</i>	-0.2475(2)	0.48606(18)	0.28813(19)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H22	8 <i>c</i>	-0.28510	0.52040	0.29460	0.0580
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C23	8 <i>c</i>	-0.2695(2)	0.43055(18)	0.2514(2)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H23	8 <i>c</i>	-0.32220	0.42670	0.23300	0.0570
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C24	8 <i>c</i>	-0.2143(2)	0.38075(17)	0.24174(17)	
$\begin{array}{c ccccc} C25 & 8c & -0.10954(19) & 0.25429(15) & 0.21767(16) \\ \hline C26 & 8c & -0.0874(2) & 0.22467(16) & 0.15557(17) \\ \hline H26 & 8c & -0.04710 & 0.24400 & 0.12720 & 0.0440 \\ \hline C27 & 8c & -0.1236(2) & 0.16732(18) & 0.1348(2) \\ \hline H27 & 8c & -0.10720 & 0.14690 & 0.09270 & 0.0540 \\ \hline C28 & 8c & -0.1834(2) & 0.13925(18) & 0.1747(2) \\ \hline \end{array}$	H24	8 <i>c</i>	-0.22910	0.34270	0.21650	0.0450
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C25	8 <i>c</i>	-0.10954(19)	0.25429(15)	0.21767(16)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C26	8 <i>c</i>	-0.0874(2)	0.22467(16)	0.15557(17)	
C27 8c -0.1236(2) 0.16732(18) 0.1348(2) H27 8c -0.10720 0.14690 0.09270 0.0540 C28 8c -0.1834(2) 0.13925(18) 0.1747(2)	H26	8 <i>c</i>	-0.04710	0.24400	0.12720	0.0440
H27 8c -0.10720 0.14690 0.09270 0.0540 C28 8c -0.1834(2) 0.13925(18) 0.1747(2)	C27	8 <i>c</i>	-0.1236(2)	0.16732(18)	0.1348(2)	
C28 8 <i>c</i> -0.1834(2) 0.13925(18) 0.1747(2)	H27	8 <i>c</i>	-0.10720	0.14690	0.09270	0.0540
	C28	8 <i>c</i>	-0.1834(2)	0.13925(18)	0.1747(2)	

H28	8 <i>c</i>	-0.20850	0.10010	0.15970	0.0560
C29	8 <i>c</i>	-0.2066(2)	0.16828(17)	0.2367(2)	
H29	8 <i>c</i>	-0.24750	0.14900	0.26440	0.0540
C30	8 <i>c</i>	-0.1700(2)	0.22573(16)	0.25804(17)	
H30	8 <i>c</i>	-0.18600	0.24580	0.30040	0.0450
C31	8 <i>c</i>	-0.0009(2)	0.30989(15)	0.32043(16)	
C32	8 <i>c</i>	-0.0331(2)	0.31262(18)	0.38775(17)	
H32	8 <i>c</i>	-0.08720	0.32570	0.39460	0.0510
C33	8 <i>c</i>	0.0146(3)	0.29611(19)	0.44452(18)	
H33	8c	-0.00710	0.29810	0.49030	0.0580
C34	8 <i>c</i>	0.0934(3)	0.27683(18)	0.43465(19)	
H34	8 <i>c</i>	0.12580	0.26600	0.47370	0.0600
C35	8 <i>c</i>	0.1250(2)	0.2733(2)	0.3685(2)	
H35	8 <i>c</i>	0.17900	0.25960	0.36220	0.0580
C36	8 <i>c</i>	0.07856(11)	0.28960(8)	0.31085(10)	
H36	8 <i>c</i>	0.10060	0.28700	0.26530	0.0470
N1A	8 <i>c</i>	0.14525(11)	0.04908(8)	-0.07488(10)	
C1A	8 <i>c</i>	0.09422(11)	0.03958(8)	-0.03774(10)	
C2A	8 <i>c</i>	0.02618(11)	0.02678(8)	0.0119(1)	
N2A	8 <i>c</i>	0.01393(11)	0.05688(8)	0.06769(10)	
H2A	8 <i>c</i>	0.04440	0.09320	0.07460	0.0780

Atom	<i>U</i> 11	Un	Uzz	U12	U12	Una
Br1	0.0433(2)	0.0369(2)	0.0425(2)	0.00030(15)	0.00126(15)	0.00408(14)
P1	0.0433(2)	0.0307(2)	0.0423(2)	0.00030(13)	0.00120(13)	0.00403(14)
P2	0.0241(4)	0.0280(4)	0.0250(4)	0.0011(3)	0.0007(3)	0.0013(3)
N1	0.0295(4)	0.0260(4)	0.0230(4)	0.0033(11)	0.0023(3)	0.0070(11)
Cl	0.0307(13)	0.0316(15)	0.0201(15)	0.0005(12)	-0.0030(11)	-0.0010(12)
C2	0.0233(17)	0.0328(16)	0.0240(14) 0.0400(18)	0.0009(12)	0.0012(12)	0.0010(12)
C3	0.0323(17)	0.0328(10)	0.052(2)	0.0029(14)	0.0013(14)	-0.0038(16)
C4	0.0324(10)	0.0426(1)	0.032(2)	0.0004(16)	0.0034(10)	-0.0019(16)
C5	0.0202(17)	0.030(2)	0.0393(18)	-0.0004(10)	0.0071(13)	0.0102(15)
C6	0.0322(17)	0.0354(17)	0.0320(16)	0.0000(10)	-0.0014(13)	0.0102(13)
C7	0.0297(16)	0.0331(17)	0.0320(10) 0.0301(15)	0.0029(11)	0.0019(13)	0.0037(13)
C8	0.02/2(10)	0.02(18)	0.0393(18)	-0.0006(14)	-0.0018(14)	-0.0017(14)
C9	0.054(2)	0.0404(19)	0.043(2)	-0.0118(18)	0.0074(18)	-0.0124(16)
C10	0.056(2)	0.0307(17)	0.053(2)	0.0006(17)	0.0203(19)	-0.0054(16)
C11	0.045(2)	0.0349(18)	0.056(2)	0.0124(16)	0.0113(18)	0.0056(17)
C12	0.0369(18)	0.0357(17)	0.0334(16)	0.0050(14)	0.0017(14)	0.0016(14)
C13	0.0276(15)	0.0262(14)	0.0294(15)	0.0002(12)	-0.0019(12)	0.0024(12)
C14	0.0305(16)	0.0348(16)	0.0316(15)	-0.0001(13)	-0.0014(13)	-0.0021(13)
C15	0.043(2)	0.0454(19)	0.0328(17)	-0.0020(16)	-0.0014(15)	-0.0070(15)
C16	0.0399(19)	0.0419(19)	0.043(2)	-0.0011(16)	-0.0121(16)	-0.0061(15)
C17	0.0307(17)	0.049(2)	0.048(2)	-0.0067(16)	-0.0040(15)	-0.0007(16)
C18	0.0328(18)	0.048(2)	0.0328(17)	-0.0023(15)	0.0023(14)	-0.0001(15)
C19	0.0348(17)	0.0306(15)	0.0291(15)	0.0029(13)	0.0099(13)	0.0008(12)
C20	0.0398(19)	0.0367(18)	0.0358(17)	-0.0020(15)	0.0094(14)	-0.0021(14)
C21	0.056(2)	0.0350(19)	0.046(2)	-0.0018(17)	0.0144(18)	-0.0025(15)
C22	0.051(2)	0.041(2)	0.052(2)	0.0163(17)	0.0171(19)	0.0052(17)
C23	0.039(2)	0.049(2)	0.054(2)	0.0090(17)	0.0074(17)	0.0026(17)
C24	0.0343(17)	0.0393(18)	0.0389(18)	0.0016(15)	0.0058(14)	-0.0012(14)
C25	0.0313(16)	0.0286(15)	0.0305(15)	0.0020(13)	-0.0014(13)	0.0030(12)
C26	0.0358(18)	0.0388(18)	0.0357(17)	-0.0001(15)	0.0015(14)	-0.0008(14)
C27	0.043(2)	0.046(2)	0.045(2)	0.0005(16)	-0.0017(16)	-0.0145(16)
C28	0.040(2)	0.0384(19)	0.061(2)	-0.0034(16)	-0.0115(18)	-0.0080(17)
C29	0.039(2)	0.043(2)	0.054(2)	-0.0090(16)	-0.0020(17)	0.0081(17)
C30	0.0439(19)	0.0360(17)	0.0336(17)	-0.0026(15)	0.0057(15)	0.0020(14)
C31	0.0401(18)	0.0251(15)	0.0281(15)	-0.0053(13)	-0.0020(13)	-0.0008(12)
C32	0.051(2)	0.0434(19)	0.0316(17)	-0.0016(17)	0.0011(16)	0.0014(14)
C33	0.072(3)	0.046(2)	0.0279(17)	-0.011(2)	-0.0022(17)	0.0029(15)
C34	0.065(3)	0.042(2)	0.043(2)	-0.0130(19)	-0.0227(19)	0.0083(16)
C35	0.050(2)	0.047(2)	0.049(2)	0.0014(17)	-0.0136(18)	0.0063(17)
C36	0.045(2)	0.0374(18)	0.0353(17)	0.0015(16)	-0.0042(15)	0.0035(14)
NIA	0.060(3)	0.081(3)	0.089(3)	-0.003(2)	0.012(2)	0.002(2)
CIA	0.053(3)	0.047(2)	0.068(3)	-0.0009(19)	-0.015(2)	-0.007(2)
C2A	0.045(2)	0.041(2)	0.060(2)	0.0046(17)	-0.0110(19)	-0.0012(18)
N2A	0.068(2)	0.052(2)	0.075(3)	-0.0091(18)	-0.004(2)	-0.0171(19)

I Literaturverzeichnis

- a) A. G. Sharpe, *Halogen Chem.* 1967, *1*, 1–39;
 b) A. I. Popov, *Halogen Chem.* 1967, *1*, 225–264.
- [2] S. Andersson, Acta Crystallogr. Sect. B 1979, 35, 1321–1324.
- [3] E. W. Falconer, A. Buechler, J. L. Stauffer, W. J. Klemperer, *Chem. Phys.* 1968, 48, 312–318.
- [4] E. H. Appelman, J. G. Malm, Prep. Inorg. React. 1965, 2, 341.
- [5] a) L. Birkenbach, K. Kellermann, *Ber.* 1925, *58b*, 786–794.
 b) A. F. Holleman, E. Wiberg und N. Wiberg, *Lehrbuch der Anorganischen Chemie*, Walter de Gruyter: Berlin, New York 1995.
 c) J. E. Huheey, *Anorganische Chemie: Prinzipien von Struktur und Reaktivität*, Walter de Gruyter: Berlin, New York 1988.
- [6] M. J. Crawford, T. M. Klapötke, P. Klüfers, P. Mayer, P. S. White, J. Am. Chem. Soc. 2000, 122, 9052–9053.
- [7] M. M. Labes, P. Love, L. F. Nichols, *Chem. Rev.* **1979**, *79*, 1–15.
- [8] a) H. G. Heal, *The Inorganic Heterocyclic Chemistry of Sulphur, Nitrogen and Phosphorous*; Academic: London 1980 und zit. Literatur;
 b) T. Chivers, *Chem. Rev.* 1985, *85*, 342–365 und zit. Literatur;
 c) T. Chivers, J. F. Richardson, N. R. M. Smith, *Inorg. Chem.* 1986, *25*, 47–51;
 d) A. Apblett, T. Chivers, *J. Chem. Soc. Chem. Commun.* 1987, 1889–1890;
 - e) A. Apblett, T. Chivers, J. Chem. Soc. Chem. Commun. 1988, 508.
- [9] a) O. Glemser, H. Schröder, H. Haeseler, *Naturwiss.* 1955, *42*, 44;
 b) O. Glemser, H. Schröder, H. Haeseler, *Z. Anorg. Allgem. Chem.* 1955, *279*, 28–37;
 - c) O. Glemser, H. Schröder, Z. Anorg. Allgem. Chem. 1956, 284, 97-100.
- [10] O. Glemser, R. Mews, Angew. Chem. 1980, 92, 904–921.
- [11] a) S. C. Peake, A. J. Downs, *J. Chem. Soc. Dalton Trans.* 1974, 859–864;
 b) A. Müller, N. Mohan, F. Königer, *J. Mol. Struct.* 1976, *30*, 297–310;

c) A. W. Allaf, G. Y. Matti, R. J. Suffolk, J. D. Watts; *J. Electron Spectrosc. Relat. Phenom.* **1989**, *48*, 41–409.

[12] a) H. Schröder, O. Glemser, Z. Anorg. Allgem. Chem. 1959, 298, 78–83;
b) L. Zborilova, P. Gebauer, Z. Anorg. Allgem. Chem. 1979, 448, 5–10;
c) H. Vincent, Y. Monteil, Syn. Reactiv. Inorg. Metal-Org. Chem. 1978, 8, 51–63;
d) J. Nelson, H. G. Heal, Inorg. Nucl. Chem. Lett. 1970, 6, 429–433;
e) M. Goehring, J. Heinke, Z. Anorg. Allgem. Chem. 1955, 278, 53–57;

f) G. G. Alange, A. J. Banister, B. Bell, J. Chem. Soc. Dalton Trans. 1972, 22, 2399–2400;

g) A. J. Banister, R. G. Hey, J. Passmore, M. N. S. Rao, *J. Fluor. Chem.* **1982**, *21*, 429–436;

h) W. L. Jolly, K. D. Maguire, Inorg. Synth. 1967, 9, 102-111;

- i) A. J. Banister; D. Younger, J. Inorg. Nucl. Chem. 1970, 32, 3763-3767;
- j) W. L. Jolly, K. D. Maguire, D. Rabinovich, *Inorg. Chem.* **1963**, *2*, 1304–1305;

k) T. Chivers, M. N. S. Rao, Can J. Chem. 1983, 61, 1957-1962;

 H. J. Emeleus, R. A. Forder, J. Poulet, G. M. Sheldrick, J. Chem. Soc. Chem. Commun. 1970, 1483–1483;

m) A. J. Banister, Z. V. Hauptman, J. Chem. Soc. Dalton Trans. 1980, 731–735;

n) J. Varwig, H. Steinbeisser, R. Mews, O. Glemser, Z. Naturforsch. 1974, 29b, 813–814.

- [13] a) H. Vincent, Y. Monteil, M. P. Berthet, J. Inorg. Nucl. Chem. 1980, 42, 5–7;
 b) H. Vincent, Y. Monteil, M. P. Berthet, Z. Anorg. Allgem. Chem 1980, 471, 233–240;
 c) H. Vincent, Y. Monteil, Z. Naturforsch. 1976, 31b, 673–676.
- [14] J. Passmore, M. Schriver, *Inorg. Chem.* **1988**, *27*, 2749–2751.
- [15] W. Heilemann, R. Mews, Chem. Ber. 1988, 121, 461–463.
- [16] E. Lork, S.-J. Chen, G. Knitter, R, Mews, *Phosphorus, Sulfur, Silicon Relat. Elem.* 1994, 93–94, 309–311.

- [17] a) J. K. Ruff, *Inorg. Chem.* 1966, *5*, 1787–1791;
 b) O. Glemser, R. Mews, H. W. Roesky, *Chem. Ber.* 1969, *102*, 1523–1528;
 c) O. Glemser, S. P. v. Halasz, *Inorg. Nucl. Chem. Lett.* 1969, *5*, 393–398.
- [18] a) W. Heilemann, R. Mews, J. Fluor. Chem. 1991, 52, 377–388;
 b) B. Krebs, E. Meyer-Hussein, O. Glemser, R. Mews, J. Chem. Soc., Chem. Commun. 1968, 1578–1579.
- [19] a) T. M. Barclay, A. W. Cordes, R. C. Haddon, M. E. Itkis, R. T. Oakley, R. W. Reed, H. Zhang, *J. Am. Chem. Soc.* 1999, *121*, 969–976;
 b) B. Xu, G. Xu, C. Qin, Y. Xu, Q. Chu, S. Zhu, *Heteroat. Chem.* 1999, *10*, 41–48;
 c) O. Glemser, S. P. v. Halasz, U. Biermann, *Inorg. Nucl. Chem. Lett.* 1968, 4, 591–596.
- [20] CCSD(T)/6-311+G(3df): $\Delta H_{298} = -115.2 \text{ kJ mol}^{-1}$; $\Delta G_{298} = -87.0 \text{ kJ mol}^{-1}$ B3LYP/6-311+G(3df): $\Delta H_{298} = -124.6 \text{ kJ mol}^{-1}$; $\Delta G_{298} = -96.7 \text{ kJ mol}^{-1}$
- [21] E. Keßenich, F. Kopp, P. Mayer, A. Schulz, Angew. Chem. 2001, 113, im Druck; Angew. Chem. Int. Ed. Engl. 2001, 40, im Druck.
- [22] A. Müller, N. Mohan, S. J. Cyvin, N. Weinstock, O. Glemser, J. Mol. Spectrosc. 1976, 59, 161–170.
- [23] a) K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, Part A, 5th Ed., Wiley&Sons Inc., New York, 1997, S. 178 (Anmerkung: v₃ und v₄ sind vertauscht.);
 b) R. Steudel, D. Lautenbach, *Z. Naturforsch.* 1969, *24b*, 350–351.
- [24] P. Bender, J. M. Wood, JR., J. Chem. Phys. 1955, 23, 1316–1317.
- [25] Die Pulverdiffraktometrische-Untersuchung ergab zweifelsfrei das Vorliegen von [Me₄N][NSCl₂] im Festkörper; jedoch war der R-Wert aufgrund des Vorliegens von mehreren Phasen, die nicht gelöst werden konnten, zu schlecht, um eine Diskussion der Bindungslängen und -winkel zu erlauben.
- [26] [(Ph₃PN)₂SCl]⁺ ist bereits als Cl⁻-Salz bekannt; H. Folkerts, D. Nußhär, F. Weller, K. Dehnicke, J. Magull, W. Hiller, Z. Anorg. Allg. Chem. 1994, 620, 1986–1991.

- [27] F. Kunkel, H. Folkerts, S. Wocadlo, H.-C. Kang, W. Massa, K. Dehnicke, Z. *Naturforsch. B* 1995, *50*, 1455–1463.
- [28] W. H. Kirchhoff, E. B. Wilson, J. Am. Chem. Soc. 1962, 84, 334–336.
- [29] I. Hargittai, Magy. Kem. Foly. 1968, 74(12), 596–599.
- [30] W. H. Kirchhoff, E. B. Wilson, J. Am. Chem. Soc. 1963, 85, 1726–1729.
- [31] T. Beppu, E. Hirota, Y. Morino, J. Mol. Spectrosc. 1970, 36, 386–397.
- [32] W. Clegg, O. Glemser, K. Harms, G. Hartmann, R. Mews, M. Noltemeyer, G.
 M. Sheldrick, *Acta Crystallogr. Sect. B* 1981, *37*, 548–554.
- [33] T. J. Murray, W. A. Little, Jr., Q. Williams, T. L. Weatherly, J. Chem. Phys. 1976, 65(3), 985–989.
- [34] B3LYP/aug-cc-pvTZ: d(SN) = 1.453, d(SCl) = 2.503 Å; <(NSCl) = 114.0,
 <(CISCl) = 104.0°; B3LYP/aug-cc-pv5Z: d(SN) = 1.443, d(SCl) = 2.485 Å;
 <(NSCl) = 114.3, <(CISCl) = 102.9°.
- [35] NBO-Analyse, *natural atomic population* (B3LYP/6-311+G(3df): $3d_{xz}(S) = 0.01367$, $3d_{yz}(S) = 0.02117$; Elektronenkonfiguration für S (NSCl₂⁻): [core]3s(1.73)3p(3.12)3d(0.08)4s(0.03)4p(0.01).
- [36] Da n=4, 5 etc. AOs am Schwefel nur sehr gering an der Bindung im Grundzustand beteiligt sind, wird auf die Diskussion von energetischhochliegenden erweiterten Valenzschalen Lewis-Strukturen verzichtet.
- [37] R. D. Harcourt, A. Schulz, J. Phys. Chem. A 2000, 104, 6510–6516.
- [38] B3LYP/6-311+G(3df), Natural Localized Molecular Orbital
 Bindungsordnung der NBO-Analyse; A. E. Reed, P. v. R. Schleyer, J. Am.
 Chem. Soc. 1990, 112, 1434–1445; A. E. Reed, P. v. R. Schleyer, Inorg.
 Chem. 1988, 27, 3969–3987.
- [39] Siehe auch Diskussion von Ehrhardt und Ahlrichs zu Hypervalenten Schwefel Verbindungen des Typs NSX_mY_n (X, Y = O, Cl, F; m = 1; n= 0, 1,2) in C. Ehrhardt, R. Ahlrichs, *Chem. Phys.* 1986, 108, 429–439.
- [40] Auf Grund der positiven Formalladung am Sauerstoff sollte Struktur E ein sehr geringes Gewicht haben.

- [41] a) E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO, Version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI;
 b) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211–7218;
 c) A. E. Reed, F. Weinhold, J. Chem. Phys. 1983, 78, 4066–4073;
 d) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735–746;
 e) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926;
 f) A. E. Reed, P. v. R. Schleyer, J. Am. Chem. Soc. 1987, 109, 7362–7373;
 g) F. Weinhold, J. E. Carpenter, The Structure of Small Molecules and Ions, Plenum: New York 1988, S. 227.
- [42] NBO-Analyse: Die Störungsenergie 2. Ordnung wurde entsprechend

folgender Gleichung berechnet: $\Delta_{\phi\phi^*} E^{(2)} = -2 \frac{(\langle \phi | \underline{h}^F \phi^* \rangle)^2}{\epsilon_{\phi^*} - \epsilon_{\phi}}$, mit h^F als Fock Operator. 2×p-LP(Cl) $\rightarrow \pi_x^*$ (NS): $E^{(2)} = 30.0$ kcal mol⁻¹ und 2×p-LP(Cl) $\rightarrow \pi_v^*$ (NS): $E^{(2)} = 19.5$ kcal mol⁻¹

- [43] a) R. D. Harcourt, *Eur. J. Inorg. Chem.* 2000, 1901–1916;
 b) R. D. Harcourt in *Valence Bond Theory and Chemical Structure*, Hrsg.: D. J. Klein, N. Trinajstic, Elsevier: New York 1990;
 c) R. D. Harcourt, *Qualitative Valence Bond Descriptions of Electron-Rich Molecules*, Lecture Notes in Chemistry, Springer-Verlag: Berlin 1982, S. 30.
- [44] Die N- und S-Atome liegen auf der z-Achse.

156;

- [45] Diese Beschreibung ist die einfachste N\u00e4herung mit idealisierten 90°
 Bindungswinkeln. Eine eingehendere Untersuchung w\u00fcrde bedeuten, dass die 3p_x(Cl1) und 3p_y(Cl2) durch die Hybridorbitale (3p_x + k·3s) am Cl1 und (3p_y + k·3s) am Cl2 ersetzt werden (k = Mischungskoeffizient (s-Anteil)).
- [46] a) Gmelin Handbook of Inorganic Chemistry: Sulfur, Sulfur-Nitrogen Compounds. Part 2, 8. Ausgabe, Springer-Verlag: Berlin 1985;
 b) J. J. Mayerle, G. Wolmerhauser, G. B. Street, Inorg. Chem. 1979, 18, 1161–1165;
 c) K. Weidenhammer, M. L. Ziegler, Z. Anorg. Allg. Chem. 1977, 434, 152–

- d) A. W. Cordes, R. F. Kroh, E. K. Gordon, *Inorg. Chem.* 1965, *4*, 681–684;
 e) H. G. Stammler, J. Weiss, *Z. Naturforsch.* 1989, *44B*, 1483–1487.
- [47] a) J. R. Galan-Mascaros, A. M. Z. Slawin, J. D. Woollins, D. J. Williams, *Polyhedron* 1996, *15*, 4603–4605;
 b) S. Aryal, I. Liu, *Spectrochim. Acta A* 2000, *56*, 851–853.
- [48] a) K. O. Christe, W. W. Wilson, J. Fluor. Chem. 1990, 47, 117–120;
 b) K. O. Christe, W. W. Wilson, J. Fluor. Chem. 1990, 46, 339–342.
- [49] a) M. Goehring, D. Voigt, *Naturwiss.* 1953, 40, 482;
 b) M. Goehring, D. Voigt, *Z. anorg. allg. Chem.* 1956, 285, 181–190;
 c) M. Goehring, *Quart. Rev. (London)* 1956, 10, 437–450.
- [50] a) P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, P. D. W. Boyd, *J. Chem. Phys.* **1989**, *91*, 1762–1774;
 b) A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, *Mol. Phys.* **1993**, *80*, 1431–1441.
- [51] M. Kaupp, P. v. R. Schleyer, H. Stoll, H. Preuss, J. Am. Chem. Soc. 1991, 113, 6012–6020.
- [52] a) J. Hanich, K. Dehnicke, Z. Naturforsch. 1984, 39b, 1467–1471;
 b) J. Hanich, U. Müller, K. Dehnicke, Z. anorg. allg. Chem. 1983, 506, 75–86.
- [53] G. Beber, J. Hanich, K. Dehnicke, Z. Naturforsch. 1984, 40b, 9–12.
- [54] B. M. Gimarc, A. Juric, *Inorg. Chim. Acta* 1985, *102*, 105–112.
- [55] R. D. Harcourt, T. M. Klapötke, A. Schulz, P. Wolynec, *J. Phys. Chem. A* 1998, *102*, 1850–1853.
- [56] a) U. Kynast, K. Dehnicke, Z. anorg. allg. Chem. 1984, 515, 61–68;
 b) H. Wadle, K. Dehnicke, Z. Naturforsch. 1985, 40b, 1314–1319.
- [57] a) J. D. Woollins, *J. Chem. Soc. Dalton Trans.* 1992, 963–968;
 b) P.F. Kelly, A. M. Z. Slawin, D. J. Williams, J. D. Woollins, *Polyhedron* 1991, *10*, 2337–2340.
- [58] R. D. Shannon, Acta. Crystallogr. Sect. A 1976, 32, 751–767.

- [59] L. Patton, K. Raymond, *Inorg. Chem.* **1969**, *8*, 2426–2431.
- [60] a) E. Keßenich, K. Polborn, A. Schulz, *Inorg. Chem.* 2001, 40, 1102–1109;
 b) E. Keßenich, T. M. Klapötke, J.Knizek, H. Nöth, A. Schulz, *Eur. J. Inorg. Chem.* 1998, 2013–2016 und dort aufgeführte Literatur.
 c) J. Dannheim, Dystar Textilfarben GmbH u. Co., EP 1054041, 2000.
 d) P. C. Hamm, US-Pat. 3564092, 1971.
- [61] H. Staudinger, J. Meyer, *Helv. Chim. Acta* 1919, 635–646.
- [62] W. Kesting, J. Prakt. Chem. 1923, 105 (2), 242–250.
- [63] a) N. Bragg, *Nature* 1934, *134*, 138;
 b) I. Knaggs, *Proc. Roy. Soc.* 1935, *150*, 576–602;
 c) L. Wöhler, *Angew. Chem.* 1922, *35*, 545–552;
 d) H. Koenen, K. H. Ide, W. Haupt, *Explosivstoffe* 1958, *10*, 223–232;
 e) H. Kast, A. Haid, *Angew. Chem.* 1925, *38*, 43–52;
 f) W. Beck, M. Bauder, *Chem. Ber.* 1970, *103*, 583–589;
 g) J. Müller, *Z. Naturforsch. B* 1979, *34*, 437–439;
 h) J. Shearer, J. I. Bryant, *J. Chem. Phys.* 1968, *48*, *No.3*, 1138–1144.
 [64] R. Huisgen, *Angew. Chem.* 1968, *80*, 329–336; *Angew. Chem. Int. Ed. Engl.* 1968, *7*, 321–328.
- [65] M. Tisler, *Synthesis* **1974**, 123–136 und zit. Literatur.
- [66] C. Wentrup, *Tetrahedron* **1970**, *26*, 4969–4983.
- [67] a) R. N. Butler in *Comprehensive Heterocyclic Chemistry*, Hrsg.: A. R. Katrizky, C. W. Ress, E. F. V. Scriven, Pergamon: Oxford, U.K. 1996, *4*, 621;
 b) J. Elguero, R. M. Claramunt, A. J. H. Summers, *Adv. Heterocycl. Chem.* 1978, *22*, 183–320;
 c) E. Lieber, R. L. Minnis, C. N. R. Rao, *Chem. Rev.* 1965, *65*, 377–384;
 [68] a) E. Cubero, M. Orozco, F. J. Luque, *J. Am. Chem. Soc.* 1998, *120*, 4723–4731.

b) L. A. Burke, J. Elguero, G. Leroy, M. Sana, J. Am. Chem. Soc. 1976, 98, 1685–1690;

c) D. Kurz, J. Reinhold, J. Mol. Struct. (Theochem) 1999, 492, 187-169.

- [69] a) Anmerkung: Die Rechnungen gelten für ein einzelnes, isoliertes Molekül in der Gasphase. Aus diesem Grunde werden kleine Differenzen zwischen Gasphase und Festkörper oder Lösung erwartet.
 b) T. M. Klapötke, A. Schulz, *Quantum Chemical Methods in Main-Group Chemistry* with an invited chapter by R. D. Harcourt, Wiley & Sons: Chichester 1998.
- [70] Für diese Isomerisierungsart sollten die Werte für $\Delta G(298K)$ und $\Delta E(0K)$ nur wenig von einander abweichen.
- [71] S. Patai, *The Chemistry of the Azido Group*, Wiley: NewYork 1971.
- [72] W. S. McEwan, M. W. Rigg, J. Am. Chem. Soc. 1951, 73, 4725–4727.
- [73] a) L. Stefaniak, J. D. Roberts, M. Witanowski, G. A. Webb, B. T. Hamdi, *Org. Magn. Reson.* 1984, 22, No. 4, 209–214;
 b) J. Mason, *Multinuclear NMR*, Plenum: New York 1987;
 c) M. Witanowski, L. Stefaniak, H. Januszewski, *Nitrogen NMR*, Plenum: London 1973, S.219;
 d) M. Witanowski, L. Stefaniak, H. Januszewski, *Ann. Rep. NMR Spectrosc.* 1993, 25, 1–480;
 e) M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der Organischen Chemie*, Thieme: Stuttgart 1995.
- [74] I. Ruppert, R. Appel, Chem. Ber. 1978, 111, 751–758.
- [75] C. Zhaoxu, F. Jianfen, X. Heming, J. Mol. Struct. (Theochem) 1999, 458, 249–256.
- [76] E. Keßenich, Diplomarbeit 1998, München, LMU.
- [77] a) R. N. Butler, F. L. Scott, J. Org. Chem. 1966, 31, 3182–3187;
 b) E. Lieber, E. Sherman, R. A. Henry, J. Cohen, J. Am. Chem. Soc. 1951, 73, 2327–2329;
 c) W. P. Norris, R. A. Henry, J. Org. Chem. 1964, 29, 650–660;
 d) R. A. Henry, W. G. Finnegan, E. Lieber, J. Am. Chem. Soc. 1955, 77, 2264–2270.
- [78] A. Schulz, Trends in Inorganic Chemistry 1999, 6, 137–150.

- [79] R. N. Butler, S. Collier, A. F. M. Fleming, J. Chem. Soc, Perkin Trans. I 1996, 5, 801–803.
- [80] J. Kaiser, H. Hartung, R. Richter, Z. Anorg. Allg. Chem. 1980, 469, 188–196.
- [81] C. F. Campana, F. Y.-K. Lo, L. F. Dahl, Inorg. Chem. 1979, 18, 3060–3064.
- [82] K. Dehnicke, F. Weller, Coord. Chem. Rev. 1997, 158, 103–169.
- [83] G. J. Palenik, Acta Crystallogr. 1963, 16, 596–600.
- [84] U. Gizycki, Angew. Chem. 1971, 11, 407–408; Angew. Chem. Int. Ed. Engl.
 1971, 10(6), 403–404.
- [85] a) C. Grundmann, Angew. Chem. 1963, 10, 450; Angew. Chem. Int. Ed. Engl. 1963, 2, 260;
 b) G. Maier, J. H. Teles, Angew. Chem. 1987, 99, 152–153; Angew. Chem. Int. Ed. Engl. 1987, 26, 155–156;
 c) T. Pasinszki, N. P. C. Westwood, J. Am. Chem. Soc. 1995, 117, 8425–8430;
 d) J. F. Sullivan, S. K. Nandy, M. J. Lee, J. R. Durig, J. Raman Spectrosc. 1992, 23, 51–60;
 e) D. Klapstein, W. M. Nau, J. Mol. Struct. 1994, 317, 59–67.
- [86] a) M. Otto, S. D. Lotz, G. Frenking, *Inorg. Chem.* 1992, *31*, 3647–3655;
 b) A. Schulz, I. C. Tornieporth-Oetting, T. M. Klapötke, *Inorg. Chem.* 1995, *34*, 4343–4346;

c) S. Cradock, J. R. Durig, J. F. Sullivan, *J. Mol. Struct.* 1985, *131*, 121–130;
d) J. R. Durig, T. S. Little, T. K. Gounev, J. K. Gardner, J. F. Sullivan, *J. Mol.*

Struct. 1996, 375, 83–94;

e) J. R. Durig, K. A. Guirgis, H. V. Krutules, Phan, H. D. Stidham, *J. Raman Spectrosc.* **1994**, *25*, 221–232;

f) G. Klatt, A. Willetts, N. C. Handy, C. D. Esposti, *Chem. Phys. Lett.* **1995**, 237, 273–278;

g) D. Yu, A. Rauk, D. A. Armstrong, J. Phys. Chem. 1992, 96, 6031–6038;
h) K. M. Ervin, J. Ho, W. C. Lineberger, J. Phys. Chem. 1988, 92, 5405–5412.

- [87] M. P. Byrn, C. J. Curtis, Yu. Hsiou, S. I. Khan, P. A. Sausin, S. K. Tendick,
 A. Terzis, C. E Strouse, *J. Am. Chem. Soc.* 1993, *115*, 9480–9497.
- [88] G. M. Sheldrick, SHELXL-93, Programm zur Verfeinerung von Kristallstrukturen, Göttingen 1993; SHELXS-86, Programm zur Lösung von Kristallstrukturen, Göttingen 1990.
- [89] a) E. H. Sheers, M. A. Hughes, American Cyanamid Company, New York, US-Pat. 2864820, 1958;
 b) E. Kühle, K. Sasse, Bayer-AG, Leverkusen, DE-BP 1174772, 1962.
- [90] a) R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533–3539;
 b) R. G. Pearson, J. Am. Chem. Soc. 1985, 107, 6801–6806.
- [91] H. Hirao, K. Omoto, H. Fujimoto, J. Phys. Chem. A 1999, 103, 5807–5811.
- [92] G. Desiraju, J. Chem. Soc. Dalton Trans. 2000, 3745–3751.
- [93] a) D. L. Fiacco, Y. Mo, S. W. Hunt, M. E. Ott, A. Roberts, K. R. Leopold, J. *Phys. Chem. A* 2001, *105*, 484–493;
 b) D. L. Fiacco, A. Torro, K. R. Leopold, *Inorg. Chem.* 2000, *39*, 37–43;
 c) D. L. Fiacco, S. W. Hunt, K. R. Leopold, *J. Phys. Chem. A* 2000, *104*, 8323–8328;
 d) W. A. Burns, J. A. Phillips, M. Canagaratna, H. Goodfriend, K. R. Leopold, *J. Phys. Chem. A* 1999, *103*, 7445–7453;
 e) M. Canagaratna, J. A. Phillips, H. Goodfriend, K. R. Leopold, *J. Am. Chem. Soc.* 1996, *118*, 5290–5295;
 f) K. R. Leopold, M. Canagaratna, J. A. Phillips in *Advances in Molecular Structure Research*; Hrsg.: M. Hargittai, I. Hargittai, JAI Press, Greenwich, CT, 1996; *2.* 103.
- [94] D. A. Bahnick, W. B. Person, J. Chem. Phys. 1968, 48, 5637–5645.
- [95] J. de Leeuw, T. Zeegers-Huyskens, Spectrochim. Acta A 1976, 32, 617–623.
- [96] C. Laurence, M. Queignec-Cabanetos, J. Chem. Soc. Dalton Trans. 1981, 2144–2145.
- [97] T. Gramstad, Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 3, 241–246.

- [98] J. Grebe, G. Geiseler, K. Harms, B. Neumüller, K. Dehnicke, *Angew. Chem.*1999, 38, 183–186; *Angew. Chem. Int. Ed. Engl.* 1999, 38, 222–225.
- [99] T. M. Klapötke, I. C. Tornieporth-Oetting, *Nichtmetallchemie*, VCH Verlagsgesellschaft: Weinheim, New York 1994.
- [100] J. Grebe, F. Weller, K. Dehnicke, Z. Naturforsch. B 1996, 51, 1739–1743.
- [101] a) J. A. A. Ketelaar, J. W. Zwartsenberg, *Recl. Trav. Chim. Pays-Bas* 1939, 58, 448–452;
 b) R. Heiart, G. B. Carpenter, *Acta Crystallogr.* 1956, 9, 889–895.
- [102] G. Cazzoli, C. D. Esposti, P. G. Favero, J. Mol. Struct. 1978, 48, 1-8.
- [103] a) C. R. Landis, T. K. Firman, D. M. Root, T. Cleveland, J. Am. Chem. Soc. 1998, 120, 1842–1854;
 b) C. R. Landis, T. Cleveland, T. K. Firman, J. Am. Chem. Soc. 1998, 120, 2641–2649.
- [104] K. F. Tebbe, R. Fröhlich, Z. Anorg. Allg. Chem. 1983, 505, 7–18.
- [105] a) O. W. Webster, Angew. Chem. 1972, 11, 173; Angew. Chem. Int. Ed. Engl. 1972, 11, 153;
 b) D. L. David, L. Popovic, P. Klaeboe, C. J. Nielsen, Spectrochim. Acta A 1980, 36, 29–36.
- [106] C. Chen, D. Law, G. Lee, S. Peng, Transition Met. Chem. 1989, 14, 76–78.
- [107] G. M. Sheldrick, SHELXL-97, Programm zur Verfeinerung von Kristallstrukturen, Göttingen 1997; SHELXS-97, Programm zur Lösung von Kristallstrukturen, Göttingen 1997.
- [108] D. L. Clark, D. W. Keogh, P. D. Palmer, B. L. Scott, C. D. Tait, *Angew. Chem.* 1998, *110*, 173–175; *Angew. Chem. Int. Ed. Engl.* 1998, *37*, 164–166 und zit. Literatur.
- [109] a) F. R. Fronczek, R. D. Gandour in *Cation Binding by Macrocycles: Complexation of Cationic Species by Crown Ethers*, Hrsg.: Y. Inone and G. W. Gokel, M. Dekker Inc.: New York 1979;
 b) G. Gokel, *Crown Ethers & Cryptands. Monographs in Supramolecular Chemistry*, The Royal Society of Chemistry: Cambridge 1991;

c) S. R. Cooper, *Crown Ether Compounds: Toward Future Applications*,
VCH Verlagsgesellschaft: New York 1992;
d) H. Piotrowski, K. Polborn, G. Hilt, K. Severin, *J. Am. Chem. Soc.* 2001,

- *123*, 2699–2700.
- [110] E. J. Walsh, E. Derby, J. Smegal, Inorg. Chim. Acta 1976, 16, L9-L10.
- [111] a) M. Otto, S. D. Lotz, G. Frenking, *Inorg. Chem.* 1992, *31*, 3647–3655;
 b) A. Schulz, I. C. Tornieporth-Oetting, T. M. Klapötke, *Inorg. Chem.* 1995, *34*, 4343–4346;
 c) S: Cradock, J. R. Durig, J. F. Sullivan, *J. Mol. Struct.* 1985, *131*, 121–130;
 d) J. R. Durig, T. S. Little, T. K. Gounev, J. K. Gardner, J. F. Sullivan, *J. Mol. Struct.* 1996, *375*, 83–94;
 e) J. R. Durig, K. A. Guirgis, H. V. Krutules, Phan, H. D. Stidham, *J. Raman Spectrosc.* 1994, *25*, 221–232;
 f) G. Klatt, A. Willetts, N. C. Handy, C. D. Esposti, *Chem. Phys. Lett.* 1995, *237*, 273–278;
 g) D. Yu, A. Rauk, D. A. Armstrong, *J. Phys. Chem.* 1992, *96*, 6031–6038;
 h) K. M. Ervin, J. Ho, W. C. Lineberger, *J. Phys. Chem.* 1988, *92*, 5405–5412.
- [112] Single point Rechnung unter Verwendung der Röntgenstrukturdaten auf Hartree-Fock Niveau mit einem 6-31G(d) Basissatz für alle Atome.
- [113] A. V. Bajaj, N. S. Poonia, Coord. Chem. Rev. 1988, 87, 55–213.
- [114] S. B. Larson, N. K. Dalley, Acta Crystallogr. Sect. B 1982, 38, 1309–1312.
- [115] P. Seiler. M. Dobler, J. D. Dunitz, Acta Crystallogr. Sect. B 1974, 30, 2744– 2745.
- [116] L. Pauling, *The Nature of the Chemical Bond*, 3rd ed. Ithaca, Cornell Univ.
 Press 1960.
- [117] a) M. Atam, U. Müller, *J. Organomet. Chem.* 1974, *71*, 435–441;
 b) S. Schlecht, N. Faza, W. Massa, S. Dapprich, G. Frenking, K. Dehnicke, *Z. Anorg. Allg. Chem.* 1998, *624*, 1011–1014;
 c) B. Neumüller, F. Schmock, S. Schlecht, K. Dehnicke, *Z. Anorg. Allg. Chem.* 2000, *626*, 1792–1796;

d) T. M. Klapötke, H. Nöth, T. Schütt, M. Warchold, Z. Anorg. Allg. Chem.
2001, 627, 81–84.

- [118] I. Dez, J. Levalois-Mitjaville, H. Grützmacher, V. Gramlich, R. de Jaeger, *Eur. J. Inorg. Chem.* 1999, 1673–1684.
- [119] a) J. B. Faught, T. Moeller, I. C. Paul, *Inorg. Chem.* 1970, *9*, 1656–1660;
 b) H. R. Allcock, J. S. Rutt, *Macromolecules* 1991, *24*, 2852–2857;
 c) E. Steger, G. Bachmann, *Z. Chem.* 1970, *8*, 306–307;
 d) F. L. Cook, C. W. Bowers, C. L. Liotta, *J. Org. Chem.* 1974, *39*, 3416–3418.
- [120] R. J. A. Otto, L. P. Audrieth, J. Am. Chem. Soc. 1958, 80, 5894–5895.
- [121] R. J. A. Otto, L. P. Audrieth, J. Am. Chem. Soc. 1960, 82, 528–530.
- [122] M. J. S. Dewar, E. A. C. Lucken, M. A. Whitehead, J. Chem. Soc. 1960, 2423–2429.
- [123] H. R. Allcock, J. S. Rutt, M. Parvez, Inorg. Chem. 1991, 30, 1776–1782.
- [124] G. M. Sheldrick, SHELXL-93, Programm zur Verfeinerung von Kristallstrukturen, Göttingen 1993; SHELXS-86, Programm zur Lösung von Kristallstrukturen, Göttingen 1990.
- [125] J. B. Faught, Can. J. Chem. 1972, 50, 1315–1320.
- [126] S. J. Rettig, J. Trotter, Can. J. Chem. 1973, 51, 1295–1302.
- [127] E. Keßenich, A. Schulz, K. Polborn, *Phosphorus, Sulfur, Silicon Relat. Elem.*2001, im Druck.
- [128] E. Keßenich, A. Schulz, K. Polborn, On the Reactivity of the 1,3,5–Triazine Ring Systems Substituted with Pseudo Halogens – Synthesis and Characterisation of Novel Triazine Azides and Isocyanates, IRIS-Tagung, Saarbrücken 2000.
- [129] E. Keßenich, A. Schulz, K. Polborn, Z. Anorg. Allgem. Chem. 2001, im Druck.
- [130] E. Keßenich, A. Schulz, R. Kempe, *Inorg. Chem.* 2001, angenommen.

- K. Schwetlick, H. G. O. Becker, G. Domschke, E. Fanghänel, M. Fischer, K. Gewald, R. Mayer, D. Pavel, H. Schmidt, *Organikum–Organisch-chemisches Grundpraktikum*, 18. berichtigte Auflage, Deutscher Verlag der Wissenschaften, Berlin 1990; *Laboratoriumstechnik der org. Chemie* 1961, 641–663.
- [132] W. L. Jolly, K. D. Maguire, Inorg. Synth. 1967, 9, 102-111.
- [133] G. Brauer, *Handbuch der pr\u00e4parativen anorganischen Chemie*, 3rd Ed., Ferdinand Enke Verlag: Stuttgart, **1978**, 632–633.
- [134] J. Liebig, Ann d. Chem. 1846, 58, 249–250.
- [135] a) M. W. Miller, L. F. Audrieth, *Inorg. Synth.* 1946, *2*, 139–141;
 b) G. R. Waitkins, R. Shutt, *Inorg. Synth.* 1946, *2*, 186–188.
- [136] L. Birkhofer, A. Ritter, P. Richter, Chem. Ber. 1963, 96, 2750-2757.
- [137] a) *Gmelin Handbook of Inorganic Chemistry: Ag*, [B3], Verlag Chemie GmbH: Weinheim 1973, S. 340; [B1], Verlag Chemie GmbH: Weinheim 1971, S. 147;
 b) J. U. Nef, *Ann. d. Chem.* 1894, 280, 308.
- [138] T. M. Klapötke, U. Thewalt, J. Organomet. Chem. 1988, 356, 173–175.
- [139] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Revision A.6, Gaussian Inc.: Pittsburgh, PA, 1998.
- [140] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K.

Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B.
Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe,
C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S.
Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees,
J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople,
Gaussian 94, Revision E.2, Gaussian Inc.: Pittsburgh, PA, 1995.

- [141] a) C. W. Bauschlicher, H. Partridge, *Chem. Phys. Lett.* 1994, 231, 277–282;
 b) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648–5652;
 c) A. D. Becke, *Phys. Rev. A* 1988, 38, 3098–3100;
 d) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785;
 e) S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.* 1980, 58, 1200–1211.
- [142] D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* 1990, 77, 123–141.
- [143] J. E. Carpenter, F. Weinhold, J. Mol. Struc. (Theochem) 1988, 169, 41-62.

<u>Lebenslauf</u>

Persönliche Daten	
Name:	Ingo Elmar Keßenich
Geburtsdatum:	23.01.1970
Geburtsort:	Bonn
Schulische Ausbildung	
08/1976-07/1980	Finkenhof-Grundschule in Bonn
08/1980-05/1989	Hardtberg-Gymnasium in Bonn
Wehrdienst	
06/1989-09/1990	LLPiKp260/PiBat310, Koblenz.
<u>Hochschullaufbahn</u>	
10/1990-02/1994	Chemiestudium an der Friedrich-Wilhelms-Universität Bonn
12/1993	Vordiplom in Chemie
03/1994-03/1998	Chemiestudium an der Ludwig-Maximilians-Universität München
03/1998	Hauptdiplom in Chemie
	Diplomarbeit unter Anleitung von Herrn Prof. Dr. Th. M. Klapötke
	über
	Synthese, Reaktionsverhalten und Untersuchungen zur
	physikalisch-chemischen Stabilität von Cyanurazid
04/1998-	Dissertation unter Anleitung von Herrn Prof. Dr. Th. M. Klapötke
	und Dr. Axel Schulz über
	Beiträge zur Halogen und Pseudohalogenchemie
Berufstätigkeit	
07/1997-03/1998	Studentische Hilfskraft am Institut für Anorganische Chemie der
	LMU München
04/1998-03/1999	Wissenschaftlicher Mitarbeiter am Institut für Anorganische
	Chemie der LMU München
04/1999–	Wissenschaftlicher Mitarbeiter am Department Chemie der LMU
	München
Publikationsliste:

- E. Keßenich, T. M. Klapötke, J.Knizek, H. Nöth, A. Schulz, *Eur. J. Inorg. Chem.* 1998, 2013–2016.
- 2) E. Keßenich, K. Polborn, A. Schulz, Inorg. Chem. 2001, 40, 1102–1109.
- E. Keßenich, F. Kopp, P. Mayer, A. Schulz, Angew. Chem. 2001, 113, 1955–1958; Angew. Chem. Int. Ed. Engl. 2001, 40, 1904–1907.
- 4) E. Keßenich, A. Schulz, K. Polborn, Z. Anorg. Allgem. Chem. 2001, im Druck.
- 5) E. Keßenich, A. Schulz, K. Severin, J. Raman Spectrosc. 2001, 32, 241-250.
- E. Keßenich, A. Schulz, K. Polborn, *Phosphorus, Sulfur, Silicon Relat. Elem.* 2001, im Druck.
- 7) E. Keßenich, A. Meyer, A. Schulz, Inorg. Chem. 2001, eingereicht.
- 8) E. Keßenich, A. Schulz, R. Kempe, Inorg. Chem. 2001, angenommen.

Poster:

 E. Keßenich, A. Schulz, K. Polborn, On the Reactivity of the 1,3,5–Triazine Ring Systems Substituted with Pseudo Halogens – Synthesis and Characterisation of Novel Triazine Azides and Isocyanates, IRIS-Tagung, Saarbrücken 2000.